Skip to main content

Advertisement

Log in

Toxicological Impact of Bisphenol A on Females’ Reproductive System: Review Based on Experimental and Epidemiological Studies

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The study encompassing research papers documented in the last two decades pertaining to the possible influence of bisphenol A (BPA) on the fertility of females are appraised with emphasis on the influence of BPA in reproductive organs (uterus and ovaries) and pregnancy outcomes including discussion on the reproductive process (implantation, estrous cycle, hormone secretion); outcomes reveal a connection amongst BPA and female infertility. Ovary, uterus, and its shape as well as function can alter a person's ability to become pregnant by influencing the hypothalamus-pituitary axis in the ovarian model. Additionally, implantation and the estrous cycle may be affected by BPA. However, more research is warranted to comprehend the underlying action mechanisms and to promptly identify any imminent reproductive harm.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Inhorn MC, Patrizio P. Infertility around the globe: new thinking on gender, reproductive technologies and global movements in the 21st century. Hum Reprod Update. 2015;21(4):411–26.

    Article  PubMed  Google Scholar 

  2. Hormann AM, Vom Saal FS, Nagel SC, Stahlhut RW, Moyer CL, Ellersieck MR, et al. Holding thermal receipt paper and eating food after using hand sanitizer results in high serum bioactive and urine total levels of bisphenol A (BPA). PLoS One. 2014;9(10):e110509.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bakker J, Hakkert B, Hessel E, Luit R, Piersma A, Sijm D, et al. Bisphenol A: part 2. Recommendations for risk management. National Institute for Public Health and the Environment, Ministry of Health, Welfare and Sport. 2016.

  4. EFSA Panel on Food Contact Materials, Enzymes, Flavourings and Processing Aids (CEF). Scientific opinion on the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J. 2015;13(1):3978.

    Article  Google Scholar 

  5. Boon P, Biesebeek J, Brants H, Bouwmeester M, Hessel E. Dietary sources of exposure to Bisphenol A in the Netherlands. RIVM letter report 2017-0187. 2018.

  6. Malm J. Inclusion of substances of very high concern in the candidate list. Helsinki: European Chemicals Agency (EACH). 2011.

  7. Völkel W, Colnot T, Csanády GA, Filser JG, Dekant W. Metabolism and kinetics of bisphenol A in humans at low doses following oral administration. Chem Res Toxicol. 2002;15(10):1281–7.

    Article  PubMed  Google Scholar 

  8. Vandenberg LN, Hauser R, Marcus M, Olea N, Welshons WV. Human exposure to bisphenol A (BPA). Reprod Toxicol. 2007;24(2):139–77.

    Article  CAS  PubMed  Google Scholar 

  9. Testai E, Hartemann P, Rodríguez-Farre E, Rastogi SC, Bustos J, Gundert-Remy U, et al. The safety of the use of bisphenol A in medical devices. Regul Toxicol Pharmacol: RTP. 2016;79:106–7.

    Article  CAS  PubMed  Google Scholar 

  10. Peretz J, Vrooman L, Ricke WA, Hunt PA, Ehrlich S, Hauser R, et al. Bisphenol A and reproductive health: update of experimental and human evidence, 2007–2013. Environ Health Perspect. 2014;122(8):775–86.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Vandenberg LN, Ehrlich S, Belcher SM, Ben-Jonathan N, Dolinoy DC, Hugo ER, et al. Low dose effects of bisphenol A: An integrated review of in vitro, laboratory animal, and epidemiology studies. Endocrine Disruptors. 2013;1(1):e26490.

    Article  Google Scholar 

  12. Maffini MV, Rubin BS, Sonnenschein C, Soto AM. Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol. 2006;254:179–86.

    Article  PubMed  Google Scholar 

  13. Malm J. Inclusion of substances of very high concern in the Candidate List for eventual inclusion in Annex XIV. Helsinki, Finland: European Chemicals Agency; 2017.

    Google Scholar 

  14. Tyl RW, Myers CB, Marr MC, Sloan CS, Castillo NP, Veselica MM, et al. Two-generation reproductive toxicity study of dietary bisphenol A in CD-1 (Swiss) mice. Toxicol Sci. 2008;104(2):362–84.

    Article  CAS  PubMed  Google Scholar 

  15. Liu Q, Cui B. Impacts of climate change/variability on the streamflow in the Yellow River Basin, China. Ecol Model. 2011;222(2):268-274.

  16. Yuan C, Zhang Y, Liu Y, Wang S, Wang Z. DNA demethylation mediated by down-regulated TETs in the testes of rare minnow Gobiocypris rarus under bisphenol A exposure. Chemosphere. 2017;171:355–61.

    Article  CAS  PubMed  Google Scholar 

  17. Vandenberg LN, Maffini MV, Sonnenschein C, Rubin BS, Soto AM. Bisphenol-A and the great divide: a review of controversies in the field of endocrine disruption. Endocr Rev. 2009;30(1):75–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cao X-L, Perez-Locas C, Dufresne G, Clement G, Popovic S, Beraldin F, et al. Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Addit Contam. 2011;28(6):791–8.

    Article  CAS  Google Scholar 

  19. Maduka Ignatius C, Ezeonu Francis E, Neboh Emeka E, Shu Elvis N, Ikekpeazu EJ. BPA and environmental estrogen in potable water sources in Enugu municipality, South-East, Nigeria. Bull Environ Contam Toxicol. 2010;85:534–7.

    Article  CAS  PubMed  Google Scholar 

  20. Liao C, Kannan K. High levels of bisphenol A in paper currencies from several countries, and implications for dermal exposure. Environ Sci Technol. 2011;45(16):6761–8.

    Article  CAS  PubMed  Google Scholar 

  21. Geens T, Aerts D, Berthot C, Bourguignon J-P, Goeyens L, Lecomte P, et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem Toxicol. 2012;50(10):3725–40.

    Article  CAS  PubMed  Google Scholar 

  22. Hammer J, Kraak MH, Parsons JR. Plastics in the marine environment: the dark side of a modern gift. Rev Environ Contam Toxicol. 2012;220:1–44.

    CAS  PubMed  Google Scholar 

  23. Liao C, Liu F, Kannan K, Bisphenol S. a new bisphenol analogue, in paper products and currency bills and its association with bisphenol A residues. Environ Sci Technol. 2012;46(12):6515–22.

    Article  CAS  PubMed  Google Scholar 

  24. Molina-García L, Fernández-de Córdova ML, Ruiz-Medina A. Analysis of Bisphenol A in milk by using a multicommuted fluorimetric sensor. Talanta. 2012;96:195–201.

    Article  PubMed  Google Scholar 

  25. Rudel RA, Gray JM, Engel CL, Rawsthorne TW, Dodson RE, Ackerman JM, et al. Food packaging and bisphenol A and bis (2-ethyhexyl) phthalate exposure: findings from a dietary intervention. Environ Health Perspect. 2011;119(7):914–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Toppari J, Larsen JC, Christiansen P, Giwercman A, Grandjean P, Guillette LJ Jr, et al. Male reproductive health and environmental xenoestrogens. Environ Health Perspect. 1996;104(suppl 4):741–803.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Demierre A-L, Peter R, Oberli A, Bourqui-Pittet M. Dermal penetration of bisphenol A in human skin contributes marginally to total exposure. Toxicol Lett. 2012;213(3):305–8.

    Article  CAS  PubMed  Google Scholar 

  28. Cho S, Choi YS, My-Do Luu H, Guo J. Determination of total leachable bisphenol A from polysulfone membranes based on multiple consecutive extractions. Talanta. 2012;101:537–40.

    Article  CAS  PubMed  Google Scholar 

  29. Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, et al. Toxicokinetics of bisphenol A scientific opinion of the panel on food additives, flavourings, processing aids and materials in contact with food (AFC). EFSA J. 2008;759:1–10.

    Google Scholar 

  30. Olea N, Pulgar R, Pérez P, Olea-Serrano F, Rivas A, Novillo-Fertrell A, et al. Estrogenicity of resin-based composites and sealants used in dentistry. Environ Health Perspect. 1996;104(3):298–305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Kang Y-G, Kim J-Y, Kim J, Won P-J, Nam J-H. Release of bisphenol A from resin composite used to bond orthodontic lingual retainers. Am J Orthod Dentofacial Orthop. 2011;140(6):779–89.

    Article  PubMed  Google Scholar 

  32. Völkel W, Kiranoglu M, Fromme H. Determination of free and total bisphenol A in urine of infants. Environ Res. 2011;111(1):143–8.

    Article  PubMed  Google Scholar 

  33. Mørck TJ, Sorda G, Bechi N, Rasmussen BS, Nielsen JB, Ietta F, et al. Placental transport and in vitro effects of Bisphenol A. Reprod Toxicol. 2010;30(1):131–7.

    Article  PubMed  Google Scholar 

  34. Manfo FPT, Jubendradass R, Nantia EA, Moundipa PF, Mathur PP. Adverse effects of bisphenol A on male reproductive function. Rev Environ Contam Toxicol. 2014;228:57–82.

    CAS  PubMed  Google Scholar 

  35. Welshons WV, Nagel SC, vom Saal FS. Large effects from small exposures. III. Endocrine mechanisms mediating effects of bisphenol A at levels of human exposure. Endocrinology. 2006;147(6):s56–69.

    Article  CAS  PubMed  Google Scholar 

  36. He Y, Miao M, Wu C, Yuan W, Gao E, Zhou Z, et al. Occupational exposure levels of bisphenol A among Chinese workers. J Occup Health. 2009;51(5):432–6.

    Article  CAS  PubMed  Google Scholar 

  37. Kaddar N, Bendridi N, Harthé C, de Ravel MR, Bienvenu A-L, Cuilleron C-Y, et al. Development of a radioimmunoassay for the measurement of Bisphenol A in biological samples. Anal Chim Acta. 2009;645(1-2):1–4.

    Article  CAS  PubMed  Google Scholar 

  38. Zhang Z, Alomirah H, Cho H-S, Li Y-F, Liao C, Minh TB, et al. Urinary bisphenol A concentrations and their implications for human exposure in several Asian countries. Environ Sci Technol. 2011;45(16):7044–50.

    Article  CAS  PubMed  Google Scholar 

  39. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol A and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113(4):391–5.

    Article  CAS  PubMed  Google Scholar 

  40. Nahar MS, Soliman AS, Colacino JA, Calafat AM, Battige K, Hablas A, et al. Urinary bisphenol A concentrations in girls from rural and urban Egypt: a pilot study. Environ Health. 2012;11(1):1-8.

  41. Calafat AM, Weuve J, Ye X, Jia LT, Hu H, Ringer S, et al. Exposure to bisphenol A and other phenols in neonatal intensive care unit premature infants. Environ Health Perspect. 2009;117(4):639–44.

    Article  CAS  PubMed  Google Scholar 

  42. Schönfelder G, Wittfoht W, Hopp H, Talsness CE, Paul M, Chahoud I. Parent bisphenol A accumulation in the human maternal-fetal-placental unit. Environ Health Perspect. 2002;110(11):A703–A7.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Sun Y, Irie M, Kishikawa N, Wada M, Kuroda N, Nakashima K. Determination of bisphenol A in human breast milk by HPLC with column-switching and fluorescence detection. Biomed Chromatogr. 2004;18(8):501–7.

    Article  CAS  PubMed  Google Scholar 

  44. Lee HJ, Chattopadhyay S, Gong E-Y, Ahn RS, Lee K. Antiandrogenic effects of bisphenol A and nonylphenol on the function of androgen receptor. Toxicol Sci. 2003;75(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  45. Wetherill YB, Akingbemi BT, Kanno J, McLachlan JA, Nadal A, Sonnenschein C, et al. In vitro molecular mechanisms of bisphenol A action. Reprod Toxicol. 2007;24(2):178–98.

    Article  CAS  PubMed  Google Scholar 

  46. Alonso-Magdalena P, Ropero AB, Soriano S, García-Arévalo M, Ripoll C, Fuentes E, et al. Bisphenol-A acts as a potent estrogen via non-classical estrogen triggered pathways. Mol Cell Endocrinol. 2012;355(2):201–7.

    Article  CAS  PubMed  Google Scholar 

  47. Chimento A, Sirianni R, Casaburi I, Pezzi V. Role of estrogen receptors and G protein-coupled estrogen receptor in regulation of hypothalamus–pituitary–testis axis and spermatogenesis. Front Endocrinol. 2014;5:1.

    Article  Google Scholar 

  48. Monje L, Varayoud J, Muñoz-de-Toro M, Luque EH, Ramos JG. Exposure of neonatal female rats to bisphenol A disrupts hypothalamic LHRH pre-mRNA processing and estrogen receptor alpha expression in nuclei controlling estrous cyclicity. Reprod Toxicol. 2010;30(4):625–34.

    Article  CAS  PubMed  Google Scholar 

  49. Rubin BS, Lenkowski JR, Schaeberle CM, Vandenberg LN, Ronsheim PM, Soto AM. Evidence of altered brain sexual differentiation in mice exposed perinatally to low, environmentally relevant levels of bisphenol A. Endocrinology. 2006;147(8):3681–91.

    Article  CAS  PubMed  Google Scholar 

  50. Patisaul HB, Fortino AE, Polston EK. Neonatal genistein or bisphenol-A exposure alters sexual differentiation of the AVPV. Neurotoxicol Teratol. 2006;28(1):111–8.

    Article  CAS  PubMed  Google Scholar 

  51. Wolstenholme JT, Rissman EF, Connelly JJ. The role of Bisphenol A in shaping the brain, epigenome and behavior. Horm Behav. 2011;59(3):296–305.

    Article  CAS  PubMed  Google Scholar 

  52. Fernández M, Bianchi M, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a alters reproductive parameters and gonadotropin releasing hormone signaling in female rats. Environ Health Perspect. 2009;117(5):757–62.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Maranghi F, Mantovani A. Targeted toxicological testing to investigate the role of endocrine disrupters in puberty disorders. Reprod Toxicol. 2012;33(3):290–6.

    Article  CAS  Google Scholar 

  54. Xi W, Lee C, Yeung W, Giesy JP, Wong MH, Zhang X, et al. Effect of perinatal and postnatal bisphenol A exposure to the regulatory circuits at the hypothalamus–pituitary–gonadal axis of CD-1 mice. Reprod Toxicol. 2011;31(4):409–17.

    Article  CAS  PubMed  Google Scholar 

  55. Nah WH, Park MJ, Gye MC. Effects of early prepubertal exposure to bisphenol A on the onset of puberty, ovarian weights, and estrous cycle in female mice. Clin Exp Reprod Med. 2011;38(2):75.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Doerge DR, Twaddle NC, Vanlandingham M, Fisher JW. Pharmacokinetics of bisphenol A in neonatal and adult CD-1 mice: inter-species comparisons with Sprague-Dawley rats and rhesus monkeys. Toxicol Lett. 2011;207(3):298–305.

    Article  CAS  PubMed  Google Scholar 

  57. Lee SH, Kang SM, Choi MH, Lee J, Park MJ, Kim SH, et al. Changes in steroid metabolism among girls with precocious puberty may not be associated with urinary levels of bisphenol A. Reprod Toxicol. 2014;44:1–6.

    Article  CAS  PubMed  Google Scholar 

  58. Akın L, Kendirci M, Narin F, Kurtoglu S, Saraymen R, Kondolot M, et al. The endocrine disruptor bisphenol A may play a role in the aetiopathogenesis of polycystic ovary syndrome in adolescent girls. Acta Paediatr. 2015;104(4):e171–e7.

    Article  PubMed  Google Scholar 

  59. Miao M, Yuan W, Yang F, Liang H, Zhou Z, Li R, et al. Associations between bisphenol A exposure and reproductive hormones among female workers. Int J Environ Res Public Health. 2015;12(10):13240–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Messerlian C, Williams PL, Ford JB, Chavarro JE, Mínguez-Alarcón L, Dadd R, et al. The Environment and Reproductive Health (EARTH) Study: a prospective preconception cohort. Human Reprod Open. 2018;2018(2):hoy001.

    Article  Google Scholar 

  61. Zhou W, Fang F, Zhu W, Chen Z-J, Du Y, Zhang J. Bisphenol A and ovarian reserve among infertile women with polycystic ovarian syndrome. Int J Environ Res Public Health. 2017;14(1):18.

    Article  Google Scholar 

  62. Fernández M, Bourguignon N, Lux-Lantos V, Libertun C. Neonatal exposure to bisphenol a and reproductive and endocrine alterations resembling the polycystic ovarian syndrome in adult rats. Environ Health Perspect. 2010;118(9):1217–22.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Tan W, Huang H, Wang Y, Wong TY, Wang C, Leung LK. Bisphenol A differentially activates protein kinase C isoforms in murine placental tissue. Toxicol Appl Pharmacol. 2013;269(2):163–8.

    Article  CAS  PubMed  Google Scholar 

  64. Rivera OE, Varayoud J, Rodríguez HA, Muñoz-de-Toro M, Luque EH. Neonatal exposure to bisphenol A or diethylstilbestrol alters the ovarian follicular dynamics in the lamb. Reprod Toxicol. 2011;32(3):304–12.

    Article  CAS  PubMed  Google Scholar 

  65. Kobayashi K, Kubota H, Ohtani K, Hojo R, Miyagawa M. Lack of effects for dietary exposure of bisphenol A during in utero and lactational periods on reproductive development in rat offspring. J Toxicol Sci. 2012;37(3):565–73.

    Article  CAS  PubMed  Google Scholar 

  66. Mendoza-Rodríguez CA, García-Guzmán M, Baranda-Avila N, Morimoto S, Perrot-Applanat M, Cerbón M. Administration of bisphenol A to dams during perinatal period modifies molecular and morphological reproductive parameters of the offspring. Reprod Toxicol. 2011;31(2):177–83.

    Article  PubMed  Google Scholar 

  67. Varayoud J, Ramos JG, Bosquiazzo VL, Lower M, Munoz-de-Toro M, Luque EH. Neonatal exposure to bisphenol A alters rat uterine implantation-associated gene expression and reduces the number of implantation sites. Endocrinology. 2011;152(3):1101–11.

    Article  CAS  PubMed  Google Scholar 

  68. Grasselli F, Baratta L, Baioni L, Bussolati S, Ramoni R, Grolli S, et al. Bisphenol A disrupts granulosa cell function. Domest Anim Endocrinol. 2010;39(1):34–9.

    Article  CAS  PubMed  Google Scholar 

  69. Santamaría C, Durando M, de Toro MM, Luque EH, Rodriguez HA. Ovarian dysfunctions in adult female rat offspring born to mothers perinatally exposed to low doses of bisphenol A. J Steroid Biochem Mol Biol. 2016;158:220–30.

    Article  PubMed  Google Scholar 

  70. Siracusa JS, Yin L, Measel E, Liang S, Yu X. Effects of bisphenol A and its analogs on reproductive health: A mini review. Reprod Toxicol. 2018;79:96–123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, et al. Toxicity evaluation of bisphenol A administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci. 2014;139(1):174–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sadowski RN, Wise LM, Park PY, Schantz SL, Juraska JM. Early exposure to bisphenol A alters neuron and glia number in the rat prefrontal cortex of adult males, but not females. Neuroscience. 2014;279:122–31.

    Article  CAS  PubMed  Google Scholar 

  73. Moore-Ambriz TR, Acuña-Hernández DG, Ramos-Robles B, Sánchez-Gutiérrez M, Santacruz-Márquez R, Sierra-Santoyo A, et al. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes. Toxicol Appl Pharmacol. 2015;289(3):507–14.

    Article  CAS  PubMed  Google Scholar 

  74. Mansur A, Adir M, Yerushalmi G, Hourvitz A, Gitman H, Yung Y, et al. Does BPA alter steroid hormone synthesis in human granulosa cells in vitro? Hum Reprod. 2016;31(7):1562–9.

    Article  CAS  PubMed  Google Scholar 

  75. Vigezzi L, Bosquiazzo VL, Kass L, Ramos JG, Muñoz-de-Toro M, Luque EH. Developmental exposure to bisphenol A alters the differentiation and functional response of the adult rat uterus to estrogen treatment. Reprod Toxicol. 2015;52:83–92.

    Article  CAS  PubMed  Google Scholar 

  76. Newbold RR, Jefferson WN, Padilla-Banks E. Long-term adverse effects of neonatal exposure to bisphenol A on the murine female reproductive tract. Reprod Toxicol. 2007;24(2):253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Newbold RR, Jefferson WN, Padilla-Banks E. Prenatal exposure to bisphenol a at environmentally relevant doses adversely affects the murine female reproductive tract later in life. Environ Health Perspect. 2009;117(6):879–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Hiyama M, Choi E-K, Wakitani S, Tachibana T, Khan H, Kusakabe KT, et al. Bisphenol-A (BPA) affects reproductive formation across generations in mice. J Vet Med Sci. 2011;73(9):1211–5.

    Article  CAS  PubMed  Google Scholar 

  79. Bosquiazzo VL, Varayoud J, Muñoz-de-Toro M, Luque EH, Ramos JG. Effects of neonatal exposure to bisphenol A on steroid regulation of vascular endothelial growth factor expression and endothelial cell proliferation in the adult rat uterus. Biol Reprod. 2010;82(1):86–95.

    Article  CAS  PubMed  Google Scholar 

  80. Kendziorski JA, Kendig EL, Gear RB, Belcher SM. Strain specific induction of pyometra and differences in immune responsiveness in mice exposed to 17α-ethinyl estradiol or the endocrine disrupting chemical bisphenol A. Reprod Toxicol. 2012;34(1):22–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Yigit F, Daglioglu S. Histological changes in the uterus of the hens after embryonic exposure to bisphenol A and diethylstilbestrol. Protoplasma. 2010;247:57–63.

    Article  CAS  PubMed  Google Scholar 

  82. Smith CC, Taylor HS. Xenoestrogen exposure imprints expression of genes (Hoxa10) required for normal uterine development. FASEB J. 2007;21(1):239–46.

    Article  CAS  PubMed  Google Scholar 

  83. Varayoud J, Ramos JG, Bosquiazzo VL, Munoz-de-Toro M, Luque EH. Developmental exposure to bisphenol A impairs the uterine response to ovarian steroids in the adult. Endocrinology. 2008;149(11):5848–60.

    Article  CAS  PubMed  Google Scholar 

  84. Camacho L, Basavarajappa MS, Chang C-W, Han T, Kobets T, Koturbash I, et al. Effects of oral exposure to bisphenol A on gene expression and global genomic DNA methylation in the prostate, female mammary gland, and uterus of NCTR Sprague-Dawley rats. Food Chem Toxicol. 2015;81:92–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bredhult C, Sahlin L, Olovsson M. Gene expression analysis of human endometrial endothelial cells exposed to Bisphenol A. Reprod Toxicol. 2009;28(1):18–25.

    Article  CAS  PubMed  Google Scholar 

  86. Mannelli C, Szóstek AZ, Lukasik K, Carotenuto C, Ietta F, Romagnoli R, et al. Bisphenol A modulates receptivity and secretory function of human decidual cells: an in vitro study. Reproduction. 2015;150(2):115–25.

    Article  CAS  PubMed  Google Scholar 

  87. Naciff JM, Khambatta ZS, Reichling TD, Carr GJ, Tiesman JP, Singleton DW, et al. The genomic response of Ishikawa cells to bisphenol A exposure is dose-and time-dependent. Toxicology. 2010;270(2-3):137–49.

    Article  CAS  PubMed  Google Scholar 

  88. Riemer RK, Heymann MA. Regulation of uterine smooth muscle function during gestation. Pediatr Res. 1998;44(5):615–27.

    Article  CAS  PubMed  Google Scholar 

  89. Forte M, Mita L, Cobellis L, Merafina V, Specchio R, Rossi S, et al. Triclosan and bisphenol a affect decidualization of human endometrial stromal cells. Mol Cell Endocrinol. 2016;422:74–83.

    Article  CAS  PubMed  Google Scholar 

  90. Helmestam M, Davey E, Stavreus-Evers A, Olovsson M. Bisphenol A affects human endometrial endothelial cell angiogenic activity in vitro. Reprod Toxicol. 2014;46:69–76.

    Article  CAS  PubMed  Google Scholar 

  91. An B-S, Ahn H-J, Kang H-S, Jung E-M, Yang H, Hong E-J, et al. Effects of estrogen and estrogenic compounds, 4-tert-octylphenol, and bisphenol A on the uterine contraction and contraction-associated proteins in rats. Mol Cell Endocrinol. 2013;375(1-2):27–34.

    Article  CAS  PubMed  Google Scholar 

  92. Adewale HB, Jefferson WN, Newbold RR, Patisaul HB. Neonatal bisphenol-a exposure alters rat reproductive development and ovarian morphology without impairing activation of gonadotropin-releasing hormone neurons. Biol Reprod. 2009;81(4):690–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Wang W, Hafner KS, Flaws JA. In utero bisphenol A exposure disrupts germ cell nest breakdown and reduces fertility with age in the mouse. Toxicol Appl Pharmacol. 2014;276(2):157–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Ziv-Gal A, Wang W, Zhou C, Flaws JA. The effects of in utero bisphenol A exposure on reproductive capacity in several generations of mice. Toxicol Appl Pharmacol. 2015;284(3):354–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Navarro V, Sanchez-Garrido M, Castellano J, Roa J, Garcia-Galiano D, Pineda R, et al. Persistent impairment of hypothalamic KiSS-1 system after exposures to estrogenic compounds at critical periods of brain sex differentiation. Endocrinology. 2009;150(5):2359–67.

    Article  CAS  PubMed  Google Scholar 

  96. Patisaul HB, Todd KL, Mickens JA, Adewale HB. Impact of neonatal exposure to the ERα agonist PPT, bisphenol-A or phytoestrogens on hypothalamic kisspeptin fiber density in male and female rats. Neurotoxicology. 2009;30(3):350–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Wang X, Chang F, Bai Y, Chen F, Zhang J, Chen L. Bisphenol A enhances kisspeptin neurons in anteroventral periventricular nucleus of female mice. J Endocrinol. 2014;221(2):201–13.

    Article  CAS  PubMed  Google Scholar 

  98. Cao J, Mickens JA, McCaffrey KA, Leyrer SM, Patisaul HB. Neonatal Bisphenol A exposure alters sexually dimorphic gene expression in the postnatal rat hypothalamus. Neurotoxicology. 2012;33(1):23–36.

    Article  CAS  PubMed  Google Scholar 

  99. Cao J, Joyner L, Mickens JA, Leyrer SM, Patisaul HB. Sex specific estrogen receptor beta (ERβ) mRNA expression in the rat hypothalamus and amygdala is altered by neonatal bisphenol A (BPA) exposure. Reproduction (Cambridge, England). 2014;147(4):537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Mahoney MM, Padmanabhan V. Developmental programming: impact of fetal exposure to endocrine-disrupting chemicals on gonadotropin-releasing hormone and estrogen receptor mRNA in sheep hypothalamus. Toxicol Appl Pharmacol. 2010;247(2):98–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Kundakovic M, Gudsnuk K, Franks B, Madrid J, Miller RL, Perera FP, et al. Sex-specific epigenetic disruption and behavioral changes following low-dose in utero bisphenol A exposure. Proc Natl Acad Sci. 2013;110(24):9956–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Ferguson SA, Paule MG, He Z. Pre-and postnatal bisphenol A treatment does not alter the number of tyrosine hydroxylase-positive cells in the anteroventral periventricular nucleus (AVPV) of weanling male and female rats. Brain Res. 2015;1624:1–8.

    Article  CAS  PubMed  Google Scholar 

  103. Abi Salloum B, Steckler TL, Herkimer C, Lee JS, Padmanabhan V. Developmental programming: impact of prenatal exposure to bisphenol-A and methoxychlor on steroid feedbacks in sheep. Toxicol Appl Pharmacol. 2013;268(3):300–8.

    Article  CAS  PubMed  Google Scholar 

  104. Souter I, Smith KW, Dimitriadis I, Ehrlich S, Williams PL, Calafat AM, et al. The association of bisphenol-A urinary concentrations with antral follicle counts and other measures of ovarian reserve in women undergoing infertility treatments. Reprod Toxicol. 2013;42:224–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Brannick KE, Craig ZR, Himes AD, Peretz JR, Wang W, Flaws JA, et al. Prenatal exposure to low doses of bisphenol A increases pituitary proliferation and gonadotroph number in female mice offspring at birth. Biol Reprod. 2012;87(4):82.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Li D, Chen Q, Cao J, Chen H, Li L, Cedergreen N, et al. The chronic effects of lignin-derived bisphenol and bisphenol A in Japanese medaka Oryzias latipes. Aquat Toxicol. 2016;170:199–207.

    Article  CAS  PubMed  Google Scholar 

  107. Zhou J, Qu F, Jin Y, Yang D. The extracts of pacific oyster (Crassostrea gigas) alleviate Ovarian Functional Disorders of female ratswith exposure to bisphenolathrough decreasing FSHR expression in ovarian tissues. Afr J Tradit Complement Altern Med. 2014;11(5):1–7.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Lee SG, Kim JY, Chung J-Y, Kim Y-J, Park J-E, Oh S, et al. Bisphenol A exposure during adulthood causes augmentation of follicular atresia and luteal regression by decreasing 17β-estradiol synthesis via downregulation of aromatase in rat ovary. Environ Health Perspect. 2013;121(6):663–9.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Gámez JM, Penalba R, Cardoso N, Bernasconi PS, Carbone S, Ponzo O, et al. Exposure to a low dose of bisphenol A impairs pituitary-ovarian axis in prepubertal rats: effects on early folliculogenesis. Environ Toxicol Pharmacol. 2015;39(1):9–15.

    Article  PubMed  Google Scholar 

  110. Teeguarden JG, Waechter JM Jr, Clewell HJ III, Covington TR, Barton HA. Evaluation of oral and intravenous route pharmacokinetics, plasma protein binding, and uterine tissue dose metrics of bisphenol A: a physiologically based pharmacokinetic approach. Toxicol Sci. 2005;85(2):823–38.

    Article  CAS  PubMed  Google Scholar 

  111. Teeguarden JG, Hanson-Drury S. A systematic review of Bisphenol A “low dose” studies in the context of human exposure: A case for establishing standards for reporting “low-dose” effects of chemicals. Food Chem Toxicol. 2013;62:935–48.

    Article  CAS  PubMed  Google Scholar 

  112. Caserta D, Bordi G, Ciardo F, Marci R, La Rocca C, Tait S, et al. The influence of endocrine disruptors in a selected population of infertile women. Gynecol Endocrinol. 2013;29(5):444–7.

    Article  CAS  PubMed  Google Scholar 

  113. La Rocca C, Tait S, Guerranti C, Busani L, Ciardo F, Bergamasco B, et al. Exposure to endocrine disrupters and nuclear receptor gene expression in infertile and fertile women from different Italian areas. Int J Environ Res Public Health. 2014;11(10):10146–64.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Bloom MS, Kim D, Vom Saal FS, Taylor JA, Cheng G, Lamb JD, et al. Bisphenol A exposure reduces the estradiol response to gonadotropin stimulation during in vitro fertilization. Fertil Steril. 2011;96(3):672–7.e2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Ehrlich S, Williams PL, Missmer SA, Flaws JA, Ye X, Calafat AM, et al. Urinary bisphenol A concentrations and early reproductive health outcomes among women undergoing IVF. Hum Reprod. 2012;27(12):3583–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Fujimoto VY, Kim D, vom Saal FS, Lamb JD, Taylor JA, Bloom MS. Serum unconjugated bisphenol A concentrations in women may adversely influence oocyte quality during in vitro fertilization. Fertil Steril. 2011;95(5):1816–9.

    Article  CAS  PubMed  Google Scholar 

  117. Mok-Lin E, Ehrlich S, Williams P, Petrozza J, Wright D, Calafat A, et al. Urinary bisphenol A concentrations and ovarian response among women undergoing IVF. Int J Androl. 2010;33(2):385–93.

    Article  CAS  PubMed  Google Scholar 

  118. Bloom MS, Vom Saal FS, Kim D, Taylor JA, Lamb JD, Fujimoto VY. Serum unconjugated bisphenol A concentrations in men may influence embryo quality indicators during in vitro fertilization. Environ Toxicol Pharmacol. 2011;32(2):319–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hanna CW, Bloom MS, Robinson WP, Kim D, Parsons PJ, vom Saal FS, et al. DNA methylation changes in whole blood is associated with exposure to the environmental contaminants, mercury, lead, cadmium and bisphenol A, in women undergoing ovarian stimulation for IVF. Hum Reprod. 2012;27(5):1401–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Shan J, Yuan L, Xiao Q, Chiorazzi N, Budman D, Teichberg S, et al. TSP50, a possible protease in human testes, is activated in breast cancer epithelial cells. Cancer Res. 2002;62(1):290–4.

    CAS  PubMed  Google Scholar 

  121. Yuan L, Shan J, De Risi D, Broome J, Lovecchio J, Gal D, et al. Isolation of a novel gene, TSP50, by a hypomethylated DNA fragment in human breast cancer. Cancer Res. 1999;59(13):3215–21.

    CAS  PubMed  Google Scholar 

  122. Chavarro JE, Mínguez-Alarcón L, Chiu Y-H, Gaskins AJ, Souter I, Williams PL, et al. Soy intake modifies the relation between urinary bisphenol A concentrations and pregnancy outcomes among women undergoing assisted reproduction. J Clin Endocrinol Metabol. 2016;101(3):1082–90.

    Article  CAS  Google Scholar 

  123. Mínguez-Alarcón L, Gaskins AJ, Chiu Y-H, Williams PL, Ehrlich S, Chavarro JE, et al. Urinary bisphenol A concentrations and association with in vitro fertilization outcomes among women from a fertility clinic. Hum Reprod. 2015;30(9):2120–8.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Berger RG, Hancock T, DeCatanzaro D. Influence of oral and subcutaneous bisphenol-A on intrauterine implantation of fertilized ova in inseminated female mice. Reprod Toxicol. 2007;23(2):138–44.

    Article  CAS  PubMed  Google Scholar 

  125. Cabaton NJ, Wadia PR, Rubin BS, Zalko D, Schaeberle CM, Askenase MH, et al. Perinatal exposure to environmentally relevant levels of bisphenol A decreases fertility and fecundity in CD-1 mice. Environ Health Perspect. 2011;119(4):547–52.

    Article  CAS  PubMed  Google Scholar 

  126. Hunt PA, Lawson C, Gieske M, Murdoch B, Smith H, Marre A, et al. Bisphenol A alters early oogenesis and follicle formation in the fetal ovary of the rhesus monkey. Proc Natl Acad Sci. 2012;109(43):17525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Lenie S, Cortvrindt R, Eichenlaub-Ritter U, Smitz J. Continuous exposure to bisphenol A during in vitro follicular development induces meiotic abnormalities. Mutat Res Genet Toxicol Environ Mutagen. 2008;651(1-2):71–81.

    Article  CAS  Google Scholar 

  128. Ferris J, Favetta LA, King WA. Bisphenol A exposure during oocyte maturation in vitro results in spindle abnormalities and chromosome misalignment in Bos taurus. Cytogenet Genome Res. 2015;145(1):50–8.

    Article  CAS  PubMed  Google Scholar 

  129. Ferris J, Mahboubi K, MacLusky N, King WA, Favetta LA. BPA exposure during in vitro oocyte maturation results in dose-dependent alterations to embryo development rates, apoptosis rate, sex ratio and gene expression. Reprod Toxicol. 2016;59:128–38.

    Article  CAS  PubMed  Google Scholar 

  130. Wang T, Han J, Duan X, Xiong B, Cui X-S, Kim N-H, et al. The toxic effects and possible mechanisms of Bisphenol A on oocyte maturation of porcine in vitro. Oncotarget. 2016;7(22):32554.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Nakano K, Nishio M, Kobayashi N, Hiradate Y, Hoshino Y, Sato E, et al. Comparison of the effects of BPA and BPAF on oocyte spindle assembly and polar body release in mice. Zygote. 2016;24(2):172–80.

    Article  CAS  PubMed  Google Scholar 

  132. Kandaraki E, Chatzigeorgiou A, Livadas S, Palioura E, Economou F, Koutsilieris M, et al. Endocrine disruptors and polycystic ovary syndrome (PCOS): elevated serum levels of bisphenol A in women with PCOS. J Clin Endocrinol Metabol. 2011;96(3):E480–E4.

    Article  CAS  Google Scholar 

  133. Vahedi M, Saeedi A, Poorbaghi SL, Sepehrimanesh M, Fattahi M. Metabolic and endocrine effects of bisphenol A exposure in market seller women with polycystic ovary syndrome. Environ Sci Pollut Res. 2016;23:23546–50.

    Article  CAS  Google Scholar 

  134. Li Y, Zhang W, Liu J, Wang W, Li H, Zhu J, et al. Prepubertal bisphenol A exposure interferes with ovarian follicle development and its relevant gene expression. Reprod Toxicol. 2014;44:33–40.

    Article  PubMed  Google Scholar 

  135. Zhou C, Wang W, Peretz J, Flaws JA. Bisphenol A exposure inhibits germ cell nest breakdown by reducing apoptosis in cultured neonatal mouse ovaries. Reprod Toxicol. 2015;57:87–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Ganesan S, Keating AF. Bisphenol A-induced ovotoxicity involves DNA damage induction to which the ovary mounts a protective response indicated by increased expression of proteins involved in DNA repair and xenobiotic biotransformation. Toxicol Sci. 2016;152(1):169–80.

    Article  CAS  PubMed  Google Scholar 

  137. Zhang Y, Tao S, Yuan C, Liu Y, Wang Z. Non-monotonic dose–response effect of bisphenol A on rare minnow Gobiocypris rarus ovarian development. Chemosphere. 2016;144:304–11.

    Article  CAS  PubMed  Google Scholar 

  138. Zhao Q, Ma Y, Sun N-x, Ye C, Zhang Q, Sun S-h, et al. Exposure to bisphenol A at physiological concentrations observed in Chinese children promotes primordial follicle growth through the PI3K/Akt pathway in an ovarian culture system. Toxicol In Vitro. 2014;28(8):1424–9.

    Article  CAS  PubMed  Google Scholar 

  139. Veiga-Lopez A, Luense LJ, Christenson LK, Padmanabhan V. Developmental programming: gestational bisphenol-A treatment alters trajectory of fetal ovarian gene expression. Endocrinology. 2013;154(5):1873–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Peretz J, Gupta RK, Singh J, Hernández-Ochoa I, Flaws JA. Bisphenol A impairs follicle growth, inhibits steroidogenesis, and downregulates rate-limiting enzymes in the estradiol biosynthesis pathway. Toxicol Sci. 2011;119(1):209–17.

    Article  CAS  PubMed  Google Scholar 

  141. Peretz J, Craig ZR, Flaws JA. Bisphenol A inhibits follicle growth and induces atresia in cultured mouse antral follicles independently of the genomic estrogenic pathway. Biol Reprod. 2012;87(3):63.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Peretz J, Flaws JA. Bisphenol A down-regulates rate-limiting Cyp11a1 to acutely inhibit steroidogenesis in cultured mouse antral follicles. Toxicol Appl Pharmacol. 2013;271(2):249–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ziv-Gal A, Craig ZR, Wang W, Flaws JA. Bisphenol A inhibits cultured mouse ovarian follicle growth partially via the aryl hydrocarbon receptor signaling pathway. Reprod Toxicol. 2013;42:58–67.

    Article  CAS  PubMed  Google Scholar 

  144. Trapphoff T, Heiligentag M, El Hajj N, Haaf T, Eichenlaub-Ritter U. Chronic exposure to a low concentration of bisphenol A during follicle culture affects the epigenetic status of germinal vesicles and metaphase II oocytes. Fertil Steril. 2013;100(6):1758–67.e1.

    Article  CAS  PubMed  Google Scholar 

  145. Dominguez MA, Petre MA, Neal MS, Foster WG. Bisphenol A concentration-dependently increases human granulosa-lutein cell matrix metalloproteinase-9 (MMP-9) enzyme output. Reprod Toxicol. 2008;25(4):420–5.

    Article  CAS  PubMed  Google Scholar 

  146. Li Q, Davila J, Kannan A, Flaws JA, Bagchi MK, Bagchi IC. Chronic exposure to bisphenol A affects uterine function during early pregnancy in mice. Endocrinology. 2016;157(5):1764–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Pan X, Wang X, Sun Y, Dou Z, Li Z. Inhibitory effects of preimplantation exposure to bisphenol-A on blastocyst development and implantation. Int J Clin Exp Med. 2015;8(6):8720.

    PubMed  PubMed Central  Google Scholar 

  148. Berger RG, Shaw J, decatanzaro D. Impact of acute bisphenol-A exposure upon intrauterine implantation of fertilized ova and urinary levels of progesterone and 17β-estradiol. Reprod Toxicol. 2008;26(2):94–9.

    Article  CAS  PubMed  Google Scholar 

  149. Berger RG, Foster WG, deCatanzaro D. Bisphenol-A exposure during the period of blastocyst implantation alters uterine morphology and perturbs measures of estrogen and progesterone receptor expression in mice. Reprod Toxicol. 2010;30(3):393–400.

    Article  CAS  PubMed  Google Scholar 

  150. Ehrlich S, Williams PL, Missmer SA, Flaws JA, Berry KF, Calafat AM, et al. Urinary bisphenol A concentrations and implantation failure among women undergoing in vitro fertilization. Environ Health Perspect. 2012;120(7):978–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Xiao S, Diao H, Smith MA, Song X, Ye X. Preimplantation exposure to bisphenol A (BPA) affects embryo transport, preimplantation embryo development, and uterine receptivity in mice. Reprod Toxicol. 2011;32(4):434–41.

    PubMed  PubMed Central  Google Scholar 

  152. Borman ED, Foster WG, Greenacre MK, Muir CC, deCatanzaro D. Stress lowers the threshold dose at which bisphenol A disrupts blastocyst implantation, in conjunction with decreased uterine closure and e-cadherin. Chem Biol Interact. 2015;237:87–95.

    Article  CAS  PubMed  Google Scholar 

  153. Crawford BR, Decatanzaro D. Disruption of blastocyst implantation by triclosan in mice: impacts of repeated and acute doses and combination with bisphenol-A. Reprod Toxicol. 2012;34(4):607–13.

    Article  CAS  PubMed  Google Scholar 

  154. Wolff MS, Engel SM, Berkowitz GS, Ye X, Silva MJ, Zhu C, et al. Prenatal phenol and phthalate exposures and birth outcomes. Environ Health Perspect. 2008;116(8):1092–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Tang R, Chen M-j, Ding G-d, Chen X-j, Han X-m, Zhou K, et al. Associations of prenatal exposure to phenols with birth outcomes. Environ Pollut. 2013;178:115–20.

    Article  CAS  PubMed  Google Scholar 

  156. Casas M, Valvi D, Ballesteros-Gomez A, Gascon M, Fernández MF, Garcia-Esteban R, et al. Exposure to bisphenol A and phthalates during pregnancy and ultrasound measures of fetal growth in the INMA-Sabadell cohort. Environ Health Perspect. 2016;124(4):521–8.

    Article  CAS  PubMed  Google Scholar 

  157. Huang Y-F, Pan W-C, Tsai Y-A, Chang C-H, Chen P-J, Shao Y-s, et al. Concurrent exposures to nonylphenol, bisphenol A, phthalates, and organophosphate pesticides on birth outcomes: A cohort study in Taipei, Taiwan. Sci Total Environ. 2017;607:1126–35.

    Article  PubMed  Google Scholar 

  158. Ding G, Wang C, Vinturache A, Zhao S, Pan R, Han W, et al. Prenatal low-level phenol exposures and birth outcomes in China. Sci Total Environ. 2017;607:1400–7.

    Article  PubMed  Google Scholar 

  159. Pinney SE, Mesaros CA, Snyder NW, Busch CM, Xiao R, Aijaz S, et al. Second trimester amniotic fluid bisphenol A concentration is associated with decreased birth weight in term infants. Reprod Toxicol. 2017;67:1–9.

    Article  CAS  PubMed  Google Scholar 

  160. Lee B-E, Park H, Hong Y-C, Ha M, Kim Y, Chang N, et al. Prenatal bisphenol A and birth outcomes: MOCEH (Mothers and Children's Environmental Health) study. Int J Hyg Environ Health. 2014;217(2-3):328–34.

    Article  CAS  PubMed  Google Scholar 

  161. Takahashi O, Oishi S. Disposition of orally administered 2, 2-Bis (4-hydroxyphenyl) propane (Bisphenol A) in pregnant rats and the placental transfer to fetuses. Environ Health Perspect. 2000;108(10):931–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Balakrishnan B, Henare K, Thorstensen EB, Ponnampalam AP, Mitchell MD. Transfer of bisphenol A across the human placenta. Am J Obstet Gynecol. 2010;202(4):393.e1.

    Article  PubMed  Google Scholar 

  163. Troisi J, Mikelson C, Richards S, Symes S, Adair D, Zullo F, et al. Placental concentrations of bisphenol A and birth weight from births in the Southeastern US. Placenta. 2014;35(11):947–52.

    Article  CAS  PubMed  Google Scholar 

  164. Wigle DT, Arbuckle TE, Turner MC, Bérubé A, Yang Q, Liu S, et al. Epidemiologic evidence of relationships between reproductive and child health outcomes and environmental chemical contaminants. J Toxic Environ Health, Part B. 2008;11(5-6):373–517.

    Article  CAS  Google Scholar 

  165. Hu C-Y, Li F-L, Hua X-G, Jiang W, Mao C, Zhang X-J. The association between prenatal bisphenol A exposure and birth weight: a meta-analysis. Reprod Toxicol. 2018;79:21–31.

    Article  CAS  PubMed  Google Scholar 

  166. Rubin BS. Bisphenol A: an endocrine disruptor with widespread exposure and multiple effects. J Steroid Biochem Mol Biol. 2011;127(1-2):27–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.A. contributed in writing of the original draft and in conceptualization of the work. F.K., A.G., M.M. performed the collection data. S.C. and R.S.V. contributed in conceptualization, writing the review, and editing of the paper.

Corresponding authors

Correspondence to Marziyeh Ajdary or Rajender S. Varma.

Ethics declarations

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Conflict of Interest

Authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaichian, S., Khodabandehloo, F., Haghighi, L. et al. Toxicological Impact of Bisphenol A on Females’ Reproductive System: Review Based on Experimental and Epidemiological Studies. Reprod. Sci. (2024). https://doi.org/10.1007/s43032-024-01521-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43032-024-01521-y

Keywords

Navigation