Skip to main content

Advertisement

Log in

Actively Targeted Nanomedicines: A New Perspective for the Treatment of Pregnancy-Related Diseases

  • Pregnancy: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

More than 20% of pregnant women experience serious complications during pregnancy, that gravely affect the safety of both the mother and the child. Due to the unique state of pregnancy, medication during pregnancy is subject to various restrictions. Nanotechnology is an emerging technology that has been the focus of extensive medical research, and great progress has recently been made in developing sensitive diagnostic modalities and efficient medical treatment. Accumulating evidence has shown that nanodrug delivery systems can significantly improve the targeting, reduce the toxicity and improve the bioavailability of drugs. Recently, some actively targeted nanomedicines have been explored in the treatment of pregnancy-related diseases. This article reviews common types of nanocarriers and active targeting ligands in common pregnancy-related diseases and complications such as preeclampsia, preterm birth, fetal growth restriction, and choriocarcinoma. Finally, the challenges and future prospects in the development of these nanomaterials are discussed, with the aim of providing guidance for future research directions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

No data associated in this paper.

References

  1. Usta IM, Nassar AH. Advanced maternal age. Part I: obstetric complications. Am J Perinatol. 2008;25(8):521–34. https://doi.org/10.1055/s-0028-1085620.

    Article  PubMed  Google Scholar 

  2. Wennberg AL, Opdahl S, Bergh C, Aaris Henningsen AK, Gissler M, Romundstad LB, Pinborg A, Tiitinen A, Skjaerven R, Wennerholm UB. Effect of maternal age on maternal and neonatal outcomes after assisted reproductive technology. Fertil Steril. 2016;106(5):1142–9. https://doi.org/10.1016/j.fertnstert.2016.06.021.

    Article  PubMed  Google Scholar 

  3. Tang M, Zhang X, Fei W, Xin Y, Zhang M, Yao Y, Zhao Y, Zheng C, Sun D. Advance in placenta drug delivery: concern for placenta-originated disease therapy. Drug Deliv. 2023;30(1):2184315. https://doi.org/10.1080/10717544.2023.2184315.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Centers for Disease Control and Prevention. Preterm birth. 2023. https://www.cdc.gov/reproductivehealth/maternalinfanthealth/pretermbirth.htm

  5. Hawkes N. Trial of Viagra for fetal growth restriction is halted after baby deaths. BMJ. 2018;362:k3247. https://doi.org/10.1136/bmj.k3247.

    Article  PubMed  Google Scholar 

  6. Mantle A, Yang MJ, Judkins A, Chanthavong I, Yoder BA, Chan B. Association of Intrapartum Drugs with spontaneous intestinal perforation: a single-Center Retrospective Review. Am J Perinatol. 2021. https://doi.org/10.1055/a-1673-0183.

    Article  PubMed  Google Scholar 

  7. Fisk NM, Atun R. Market failure and the poverty of new drugs in maternal health. PLoS Med. 2008;5(1):e22. https://doi.org/10.1371/journal.pmed.0050022.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Fathi-Karkan S, Arshad R, Rahdar A, Ramezani A, Behzadmehr R, Ghotekar S, Pandey S. Recent advancements in the targeted delivery of etoposide nanomedicine for cancer therapy: a comprehensive review. Eur J Med Chem. 2023;259:115676. https://doi.org/10.1016/j.ejmech.2023.115676.

    Article  CAS  PubMed  Google Scholar 

  9. De Jong WH, Borm PJ. Drug delivery and nanoparticles:applications and hazards. Int J Nanomed. 2008;3(2):133–49. https://doi.org/10.2147/ijn.s596.

    Article  Google Scholar 

  10. Yusuf A, Almotairy ARZ, Henidi H, Alshehri OY, Aldughaim MS. Nanoparticles as Drug Delivery Systems: A Review of the Implication of Nanoparticles’ Physicochemical Properties on Responses in Biological Systems. Polym (Basel). 2023;15(7). https://doi.org/10.3390/polym15071596.

  11. van der Meel R, Vehmeijer LJ, Kok RJ, Storm G, van Gaal EV. Ligand-targeted particulate nanomedicines undergoing clinical evaluation: current status. Adv Drug Deliv Rev. 2013;65(10):1284–98. https://doi.org/10.1016/j.addr.2013.08.012.

    Article  CAS  PubMed  Google Scholar 

  12. Friedman AD, Claypool SE, Liu R. The smart targeting of nanoparticles. Curr Pharm Des. 2013;19(35):6315–29. https://doi.org/10.2174/13816128113199990375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Barenholz Y. Doxil(R)--the first FDA-approved nano-drug: lessons learned. J Control Release. 2012;160(2):117–34. https://doi.org/10.1016/j.jconrel.2012.03.020.

    Article  CAS  PubMed  Google Scholar 

  14. Tian B, Hua S, Liu J. Multi-functional chitosan-based nanoparticles for drug delivery: recent advanced insight into cancer therapy. Carbohydr Polym. 2023;315:120972. https://doi.org/10.1016/j.carbpol.2023.120972.

    Article  CAS  PubMed  Google Scholar 

  15. Zong TX, Silveira AP, Morais JAV, Sampaio MC, Muehlmann LA, Zhang J, Jiang CS, Liu SK. Recent advances in Antimicrobial Nano-Drug Delivery systems. Nanomaterials (Basel). 2022;12(11). https://doi.org/10.3390/nano12111855.

  16. Yang B, Song BP, Shankar S, Guller A, Deng W. Recent advances in liposome formulations for breast cancer therapeutics. Cell Mol Life Sci. 2021;78(13):5225–43. https://doi.org/10.1007/s00018-021-03850-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale Res Lett. 2013;8(1):102. https://doi.org/10.1186/1556-276X-8-102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Bulbake U, Doppalapudi S, Kommineni N, Khan W. Liposomal formulations in clinical use. Updated Rev Pharm. 2017;9(2). https://doi.org/10.3390/pharmaceutics9020012.

  19. Zhang J, Leifer F, Rose S, Chun DY, Thaisz J, Herr T, Nashed M, Joseph J, Perkins WR, DiPetrillo K. Amikacin Liposome Inhalation suspension (ALIS) penetrates non-tuberculous mycobacterial biofilms and enhances Amikacin Uptake into macrophages. Front Microbiol. 2018;9:915. https://doi.org/10.3389/fmicb.2018.00915.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Herzog C, Hartmann K, Kunzi V, Kursteiner O, Mischler R, Lazar H, Gluck R. Eleven years of Inflexal V-a virosomal adjuvanted influenza vaccine. Vaccine. 2009;27(33):4381–7. https://doi.org/10.1016/j.vaccine.2009.05.029.

    Article  CAS  PubMed  Google Scholar 

  21. Guimaraes D, Cavaco-Paulo A, Nogueira E. Design of liposomes as drug delivery system for therapeutic applications. Int J Pharm. 2021;601:120571. https://doi.org/10.1016/j.ijpharm.2021.120571.

    Article  CAS  PubMed  Google Scholar 

  22. Bamrungsap S, Zhao Z, Chen T, Wang L, Li C, Fu T, Tan W. Nanotechnology in therapeutics: a focus on nanoparticles as a drug delivery system. Nanomed (Lond). 2012;7(8):1253–71. https://doi.org/10.2217/nnm.12.87.

    Article  CAS  Google Scholar 

  23. El-Hammadi MM, Arias JL. Recent advances in the Surface functionalization of PLGA-Based nanomedicines. Nanomaterials (Basel). 2022;12(3). https://doi.org/10.3390/nano12030354.

  24. Florez L, Herrmann C, Cramer JM, Hauser CP, Koynov K, Landfester K, Crespy D, Mailander V. How shape influences uptake: interactions of anisotropic polymer nanoparticles and human mesenchymal stem cells. Small. 2012;8(14):2222–30. https://doi.org/10.1002/smll.201102002.

    Article  CAS  PubMed  Google Scholar 

  25. Wang L, Hao Y, Li H, Zhao Y, Meng D, Li D, Shi J, Zhang H, Zhang Z, Zhang Y. Co-delivery of doxorubicin and siRNA for glioma therapy by a brain targeting system: angiopep-2-modified poly(lactic-co-glycolic acid) nanoparticles. J Drug Target. 2015;23(9):832–46. https://doi.org/10.3109/1061186X.2015.1025077.

    Article  CAS  PubMed  Google Scholar 

  26. Zhang Z, Cheng W, Pan Y, Jia L. An anticancer agent-loaded PLGA nanomedicine with glutathione-response and targeted delivery for the treatment of lung cancer. J Mater Chem B. 2020;8(4):655–65. https://doi.org/10.1039/c9tb02284h.

    Article  CAS  PubMed  Google Scholar 

  27. Kim Y, Park EJ, Na DH. Recent progress in dendrimer-based nanomedicine development. Arch Pharm Res. 2018;41(6):571–82. https://doi.org/10.1007/s12272-018-1008-4.

    Article  CAS  PubMed  Google Scholar 

  28. Kodama Y, Nakamura T, Kurosaki T, Egashira K, Mine T, Nakagawa H, Muro T, Kitahara T, Higuchi N, Sasaki H. Biodegradable nanoparticles composed of dendrigraft poly-L-lysine for gene delivery. Eur J Pharm Biopharm. 2014;87(3):472–9. https://doi.org/10.1016/j.ejpb.2014.04.013.

    Article  CAS  PubMed  Google Scholar 

  29. Zhao K, Rong G, Teng Q, Li X, Lan H, Yu L, Yu S, Jin Z, Chen G, Li Z. Dendrigraft poly-L-lysines delivery of DNA vaccine effectively enhances the immunogenic responses against H9N2 avian influenza virus infection in chickens. Nanomedicine. 2020;27:102209. https://doi.org/10.1016/j.nano.2020.102209.

    Article  CAS  PubMed  Google Scholar 

  30. MacDiarmid JA, Mugridge NB, Weiss JC, Phillips L, Burn AL, Paulin RP, Haasdyk JE, Dickson KA, Brahmbhatt VN, Pattison ST, et al. Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell. 2007;11(5):431–45. https://doi.org/10.1016/j.ccr.2007.03.012.

    Article  CAS  PubMed  Google Scholar 

  31. MacDiarmid JA, Brahmbhatt H. Minicells: versatile vectors for targeted drug or si/shRNA cancer therapy. Curr Opin Biotechnol. 2011;22(6):909–16. https://doi.org/10.1016/j.copbio.2011.04.008.

    Article  CAS  PubMed  Google Scholar 

  32. Kaitu’u-Lino TJ, Pattison S, Ye L, Tuohey L, Sluka P, MacDiarmid J, Brahmbhatt H, Johns T, Horne AW, Brown J, et al. Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology. 2013;154(2):911–9. https://doi.org/10.1210/en.2012-1832.

    Article  CAS  PubMed  Google Scholar 

  33. Hari SK, Gauba A, Shrivastava N, Tripathi RM, Jain SK, Pandey AK. Polymeric micelles and cancer therapy: an ingenious multimodal tumor-targeted drug delivery system. Drug Deliv Transl Res. 2023;13(1):135–63. https://doi.org/10.1007/s13346-022-01197-4.

    Article  PubMed  Google Scholar 

  34. Hwang D, Ramsey JD, Kabanov AV. Polymeric micelles for the delivery of poorly soluble drugs: from nanoformulation to clinical approval. Adv Drug Deliv Rev. 2020;156:80–118. https://doi.org/10.1016/j.addr.2020.09.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cabral H, Miyata K, Osada K, Kataoka K. Block Copolymer Micelles in Nanomedicine Applications. Chem Rev. 2018;118(14):6844–92. https://doi.org/10.1021/acs.chemrev.8b00199.

    Article  CAS  PubMed  Google Scholar 

  36. Bae YH. Drug targeting and tumor heterogeneity. J Control Release. 2009;133(1):2–3. https://doi.org/10.1016/j.jconrel.2008.09.074.

    Article  CAS  PubMed  Google Scholar 

  37. Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9). https://doi.org/10.3390/molecules25092193.

  38. Cheng Z, Li M, Dey R, Chen Y. Nanomaterials for cancer therapy: current progress and perspectives. J Hematol Oncol. 2021;14(1):85. https://doi.org/10.1186/s13045-021-01096-0.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Pereira KV, Giacomeli R, Gomes de Gomes M, Haas SE. The challenge of using nanotherapy during pregnancy: Technological aspects and biomedical implications. Placenta. 2020;100:75–80. https://doi.org/10.1016/j.placenta.2020.08.005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Huppertz B. The anatomy of the normal placenta. J Clin Pathol. 2008;61(12):1296–302. https://doi.org/10.1136/jcp.2008.055277.

    Article  CAS  PubMed  Google Scholar 

  41. Kojima J, Ono M, Kuji N, Nishi H. Human chorionic villous differentiation and placental development. Int J Mol Sci. 2022;23(14). https://doi.org/10.3390/ijms23148003.

  42. James JL, Stone PR, Chamley LW. The regulation of trophoblast differentiation by oxygen in the first trimester of pregnancy. Hum Reprod Update. 2006;12(2):137–44. https://doi.org/10.1093/humupd/dmi043.

    Article  CAS  PubMed  Google Scholar 

  43. de Araujo TE, Milian ICB, de Souza G, da Silva RJ, Rosini AM, Guirelli PM, Franco PS, Barbosa BF, Ferro EAV, da Costa IN. Experimental models of maternal-fetal interface and their potential use for nanotechnology applications. Cell Biol Int. 2020;44(1):36–50. https://doi.org/10.1002/cbin.11222.

  44. Pemathilaka RL, Reynolds DE, Hashemi NN. Drug transport across the human placenta: review of placenta-on-a-chip and previous approaches. Interface Focus. 2019;9(5):20190031. https://doi.org/10.1098/rsfs.2019.0031.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Rattanapinyopituk K, Shimada A, Morita T, Sakurai M, Asano A, Hasegawa T, Inoue K, Takano H. Demonstration of the clathrin- and caveolin-mediated endocytosis at the maternal-fetal barrier in mouse placenta after intravenous administration of gold nanoparticles. J Vet Med Sci. 2014;76(3):377–87. https://doi.org/10.1292/jvms.13-0512.

    Article  CAS  PubMed  Google Scholar 

  46. Walker N, Filis P, Soffientini U, Bellingham M, O’Shaughnessy PJ, Fowler PA. Placental transporter localization and expression in the human: the importance of species, sex, and gestational age differencesdagger. Biol Reprod. 2017;96(4):733–42. https://doi.org/10.1093/biolre/iox012.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mao Q, Chen X. An update on placental drug transport and its relevance to fetal drug exposure. Med Rev (Berl). 2022;2(5):501–11. https://doi.org/10.1515/mr-2022-0025.

    Article  Google Scholar 

  48. Figueroa-Espada CG, Hofbauer S, Mitchell MJ, Riley RS. Exploiting the placenta for nanoparticle-mediated drug delivery during pregnancy. Adv Drug Deliv Rev. 2020;160:244–61. https://doi.org/10.1016/j.addr.2020.09.006.

    Article  CAS  PubMed  Google Scholar 

  49. Whigham CA, MacDonald TM, Walker SP, Hannan NJ, Tong S, Kaitu’u-Lino TJ. The untapped potential of placenta-enriched molecules for diagnostic and therapeutic development. Placenta. 2019;84:28–31. https://doi.org/10.1016/j.placenta.2019.02.002.

    Article  CAS  PubMed  Google Scholar 

  50. Ferretti C, Bruni L, Dangles-Marie V, Pecking AP, Bellet D. Molecular circuits shared by placental and cancer cells, and their implications in the proliferative, invasive and migratory capacities of trophoblasts. Hum Reprod Update. 2007;13(2):121–41. https://doi.org/10.1093/humupd/dml048.

    Article  CAS  PubMed  Google Scholar 

  51. King A, Ndifon C, Lui S, Widdows K, Kotamraju VR, Agemy L, Teesalu T, Glazier JD, Cellesi F, Tirelli N, et al. Tumor-homing peptides as tools for targeted delivery of payloads to the placenta. Sci Adv. 2016;2(5):e1600349. https://doi.org/10.1126/sciadv.1600349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cureton N, Korotkova I, Baker B, Greenwood S, Wareing M, Kotamraju VR, Teesalu T, Cellesi F, Tirelli N, Ruoslahti E, et al. Selective targeting of a Novel Vasodilator to the Uterine vasculature to treat impaired Uteroplacental perfusion in pregnancy. Theranostics. 2017;7(15):3715–31. https://doi.org/10.7150/thno.19678.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Zhang B, Tan L, Yu Y, Wang B, Chen Z, Han J, Li M, Chen J, Xiao T, Ambati BK, et al. Placenta-specific drug delivery by trophoblast-targeted nanoparticles in mice. Theranostics. 2018;8(10):2765–81. https://doi.org/10.7150/thno.22904.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hussain A, Kumar A, Uttam V, Sharma U, Sak K, Saini RV, Saini AK, Haque S, Tuli HS, Jain A, et al. Application of curcumin nanoformulations to target folic acid receptor in cancer: recent trends and advances. Environ Res. 2023;233:116476. https://doi.org/10.1016/j.envres.2023.116476.

    Article  CAS  PubMed  Google Scholar 

  55. Boss SD, Ametamey SM. Development of Folate receptor-targeted PET radiopharmaceuticals for Tumor Imaging-A Bench-to-Bedside Journey. Cancers (Basel). 2020;12(6). https://doi.org/10.3390/cancers12061508.

  56. Liu Y, Zhang Q, Gao X, Wang T. Study on lipid nanomicelles targeting placenta for the treatment of preeclampsia. J Drug Target. 2022;30(8):894–909. https://doi.org/10.1080/1061186X.2022.2068558.

    Article  CAS  PubMed  Google Scholar 

  57. Fuchs AR, Fuchs F, Husslein P, Soloff MS. Oxytocin receptors in the human uterus during pregnancy and parturition. Am J Obstet Gynecol. 1984;150(6):734–41. https://doi.org/10.1016/0002-9378(84)90677-x.

    Article  CAS  PubMed  Google Scholar 

  58. Refuerzo JS, Leonard F, Bulayeva N, Gorenstein D, Chiossi G, Ontiveros A, Longo M, Godin B. Uterus-targeted liposomes for preterm labor management: studies in pregnant mice. Sci Rep. 2016;6:34710. https://doi.org/10.1038/srep34710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Holmes VA, Wallace JM. Haemostasis in normal pregnancy: a balancing act? Biochem Soc Trans. 2005;33(Pt 2):428–32. https://doi.org/10.1042/BST0330428.

    Article  CAS  PubMed  Google Scholar 

  60. Zhang N, Ru B, Hu J, Xu L, Wan Q, Liu W, Cai W, Zhu T, Ji Z, Guo R, et al. Recent advances of CREKA peptide-based nanoplatforms in biomedical applications. J Nanobiotechnol. 2023;21(1):77. https://doi.org/10.1186/s12951-023-01827-0.

    Article  CAS  Google Scholar 

  61. Agemy L, Sugahara KN, Kotamraju VR, Gujraty K, Girard OM, Kono Y, Mattrey RF, Park JH, Sailor MJ, Jimenez AI, et al. Nanoparticle-induced vascular blockade in human prostate cancer. Blood. 2010;116(15):2847–56. https://doi.org/10.1182/blood-2010-03-274258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Soper JT. Gestational trophoblastic disease. Obstet Gynecol. 2006;108(1):176–87. https://doi.org/10.1097/01.AOG.0000224697.31138.a1.

    Article  PubMed  Google Scholar 

  63. Wang Y, Wang Z, Zhu X, Wan Q, Han P, Ying J, Qian J. Intestinal metastasis from choriocarcinoma: a case series and literature review. World J Surg Oncol. 2022;20(1):173. https://doi.org/10.1186/s12957-022-02623-0.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Seckl MJ, Sebire NJ, Berkowitz RS. Gestational trophoblastic disease. Lancet. 2010;376(9742):717–29. https://doi.org/10.1016/S0140-6736(10)60280-2.

    Article  PubMed  Google Scholar 

  65. Deleuze A, Massard C, Le Du F, You B, Lefeuvre-Plesse C, Bolze PA, de la Motte Rouge T. Management of trophoblastic tumors: review of evidence, current practice, and future directions. Expert Rev Anticancer Ther. 2023;23(7):699–708. https://doi.org/10.1080/14737140.2023.2215438.

    Article  CAS  PubMed  Google Scholar 

  66. Tu W, Luo M, Wang Z, Yan W, Xia Y, Deng H, He J, Han P, Tian D. Upregulation of SATB1 promotes tumor growth and metastasis in liver cancer. Liver Int. 2012;32(7):1064–78. https://doi.org/10.1111/j.1478-3231.2012.02815.x.

    Article  CAS  PubMed  Google Scholar 

  67. Hu B, Zhong L, Weng Y, Peng L, Huang Y, Zhao Y, Liang XJ. Therapeutic siRNA: state of the art. Signal Transduct Target Ther. 2020;5(1):101. https://doi.org/10.1038/s41392-020-0207-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Dong J, Cao Y, Shen H, Ma Q, Mao S, Li S, Sun J. EGFR aptamer-conjugated liposome-polycation-DNA complex for targeted delivery of SATB1 small interfering RNA to choriocarcinoma cells. Biomed Pharmacother. 2018;107:849–59. https://doi.org/10.1016/j.biopha.2018.08.042.

    Article  CAS  PubMed  Google Scholar 

  69. Zhou D, Ye C, Pan Z, Deng Y. SATB1 Knockdown inhibits Proliferation and Invasion and decreases Chemoradiation Resistance in Nasopharyngeal Carcinoma cells by reversing EMT and suppressing MMP-9. Int J Med Sci. 2021;18(1):42–52. https://doi.org/10.7150/ijms.49792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Soto-Cerrato V, Vinals F, Lambert JR, Kelly JA, Perez-Tomas R. Prodigiosin induces the proapoptotic gene NAG-1 via glycogen synthase kinase-3beta activity in human breast cancer cells. Mol Cancer Ther. 2007;6(1):362–9. https://doi.org/10.1158/1535-7163.MCT-06-0266.

    Article  CAS  PubMed  Google Scholar 

  71. Zhao W, Gao D, Ning L, Jiang Y, Li Z, Huang B, Chen A, Wang C, Liu Y. Prodigiosin inhibits the proliferation of glioblastoma by regulating the KIAA1524/PP2A signaling pathway. Sci Rep. 2022;12(1):18527. https://doi.org/10.1038/s41598-022-23186-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Zhao K, Li D, Cheng G, Zhang B, Han J, Chen J, Wang B, Li M, Xiao T, Zhang J, et al. Targeted delivery prodigiosin to Choriocarcinoma by peptide-guided dendrigraft Poly-l-lysines nanoparticles. Int J Mol Sci. 2019;20(21). https://doi.org/10.3390/ijms20215458.

  73. Zhang X, Chen Y, Sun D, Zhu X, Ying X, Yao Y, Fei W, Zheng C. Emerging pharmacologic interventions for pre-eclampsia treatment. Expert Opin Ther Targets. 2022;26(8):739–59. https://doi.org/10.1080/14728222.2022.2134779.

    Article  PubMed  Google Scholar 

  74. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, McAuliffe F, da Silva Costa F, von Dadelszen P, McIntyre HD, et al. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: a pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(Suppl 1):1–33. https://doi.org/10.1002/ijgo.12802.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Ives CW, Sinkey R, Rajapreyar I, Tita ATN, Oparil S. Preeclampsia-Pathophysiology and Clinical presentations: JACC State-of-the-art review. J Am Coll Cardiol. 2020;76(14):1690–702. https://doi.org/10.1016/j.jacc.2020.08.014.

    Article  CAS  PubMed  Google Scholar 

  76. von Dadelszen P, Magee LA. Pre-eclampsia: an update. Curr Hypertens Rep. 2014;16(8). https://doi.org/10.1007/s11906-014-0454-8.

  77. Turanov AA, Lo A, Hassler MR, Makris A, Ashar-Patel A, Alterman JF, Coles AH, Haraszti RA, Roux L, Godinho B, et al. RNAi modulation of placental sFLT1 for the treatment of preeclampsia. Nat Biotechnol. 2018. https://doi.org/10.1038/nbt.4297.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yu J, Jia J, Guo X, Chen R, Feng L. Modulating circulating sFlt1 in an animal model of preeclampsia using PAMAM nanoparticles for siRNA delivery. Placenta. 2017;58:1–8. https://doi.org/10.1016/j.placenta.2017.07.360.

    Article  CAS  PubMed  Google Scholar 

  79. Li L, Yang H, Chen P, Xin T, Zhou Q, Wei D, Zhang Y, Wang S. Trophoblast-targeted Nanomedicine modulates placental sFLT1 for Preeclampsia Treatment. Front Bioeng Biotechnol. 2020;8:64. https://doi.org/10.3389/fbioe.2020.00064.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Li L, Li H, Xue J, Chen P, Zhou Q, Zhang C. Nanoparticle-mediated simultaneous downregulation of placental Nrf2 and sFlt1 improves maternal and fetal outcomes in a Preeclampsia Mouse Model. ACS Biomater Sci Eng. 2020;6(10):5866–73. https://doi.org/10.1021/acsbiomaterials.0c00826.

    Article  CAS  PubMed  Google Scholar 

  81. Burton GJ, Jauniaux E. Pathophysiology of placental-derived fetal growth restriction. Am J Obstet Gynecol. 2018;218(2S):S745–61. https://doi.org/10.1016/j.ajog.2017.11.577.

    Article  CAS  PubMed  Google Scholar 

  82. Sharma D, Shastri S, Sharma P. Intrauterine growth restriction: antenatal and postnatal aspects. Clin Med Insights Pediatr. 2016;10:67–83. https://doi.org/10.4137/CMPed.S40070.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Fung C, Zinkhan E. Short- and long-term implications of small for gestational age. Obstet Gynecol Clin North Am. 2021;48(2):311–23. https://doi.org/10.1016/j.ogc.2021.02.004.

    Article  PubMed  Google Scholar 

  84. Vollmer B, Edmonds CJ. School Age neurological and cognitive outcomes of fetal growth retardation or small for gestational age Birth Weight. Front Endocrinol (Lausanne). 2019;10:186. https://doi.org/10.3389/fendo.2019.00186.

    Article  PubMed  Google Scholar 

  85. Alberry M, Soothill P. Management of fetal growth restriction. Arch Dis Child Fetal Neonatal Ed. 2007;92(1):F62–67. https://doi.org/10.1136/adc.2005.082297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Constancia M, Hemberger M, Hughes J, Dean W, Ferguson-Smith A, Fundele R, Stewart F, Kelsey G, Fowden A, Sibley C, et al. Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature. 2002;417(6892):945–8. https://doi.org/10.1038/nature00819.

    Article  CAS  PubMed  Google Scholar 

  87. Forbes K, Westwood M, Baker PN, Aplin JD. Insulin-like growth factor I and II regulate the life cycle of trophoblast in the developing human placenta. Am J Physiol Cell Physiol. 2008;294(6):C1313–1322. https://doi.org/10.1152/ajpcell.00035.2008.

    Article  CAS  PubMed  Google Scholar 

  88. Li Q, Liu X, Liu W, Zhang Y, Liu W, Wu M, Chen Z, Zhao Y, Zou L. Placenta-targeted nanoparticles loaded with PFKFB3 overexpression plasmids enhance angiogenesis and placental function. Bioeng (Basel). 2022;9(11). https://doi.org/10.3390/bioengineering9110652.

  89. Williams DJ, Vallance PJ, Neild GH, Spencer JA, Imms FJ. Nitric oxide-mediated vasodilation in human pregnancy. Am J Physiol. 1997;272(2 Pt 2):H748–752. https://doi.org/10.1152/ajpheart.1997.272.2.H748.

    Article  CAS  PubMed  Google Scholar 

  90. Lundberg JO, Weitzberg E, Gladwin MT. The nitrate-nitrite-nitric oxide pathway in physiology and therapeutics. Nat Rev Drug Discov. 2008;7(2):156–67. https://doi.org/10.1038/nrd2466.

    Article  CAS  PubMed  Google Scholar 

  91. Duffett L, Rodger M. LMWH to prevent placenta-mediated pregnancy complications: an update. Br J Haematol. 2015;168(5):619–38. https://doi.org/10.1111/bjh.13209.

    Article  CAS  PubMed  Google Scholar 

  92. Cheng J, Zhang S, Li C, Li K, Jia X, Wei Q, Qi H, Zhang J. Functionally integrating nanoparticles alleviate deep vein thrombosis in pregnancy and rescue intrauterine growth restriction. Nat Commun. 2022;13(1):7166. https://doi.org/10.1038/s41467-022-34878-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. WHO. Recommended definitions, terminology and format for statistical tables related to the perinatal period and use of a new certificate for cause of perinatal deaths. Modifications recommended by FIGO as amended October 14, 1976. Acta Obstet Gynecol Scand. 1977;56(3):247–53.

    Google Scholar 

  94. Coler BS, Shynlova O, Boros-Rausch A, Lye S, McCartney S, Leimert KB, Xu W, Chemtob S, Olson D, Li M, et al. Landscape of Preterm Birth Therapeutics and a path Forward. J Clin Med. 2021;10(13). https://doi.org/10.3390/jcm10132912.

  95. Abramovici A, Cantu J, Jenkins SM. Tocolytic therapy for acute preterm labor. Obstet Gynecol Clin North Am. 2012;39(1):77–87. https://doi.org/10.1016/j.ogc.2011.12.003.

    Article  PubMed  Google Scholar 

  96. Vermillion ST, Landen CN. Prostaglandin inhibitors as tocolytic agents. Semin Perinatol. 2001;25(4):256–62. https://doi.org/10.1053/sper.2001.27549.

    Article  CAS  PubMed  Google Scholar 

  97. Moise KJ Jr., Ou CN, Kirshon B, Cano LE, Rognerud C, Carpenter RJ Jr. Placental transfer of indomethacin in the human pregnancy. Am J Obstet Gynecol. 1990;162(2):549–54. https://doi.org/10.1016/0002-9378(90)90427-9.

    Article  CAS  PubMed  Google Scholar 

  98. Paul JW, Hua S, Ilicic M, Tolosa JM, Butler T, Robertson S, Smith R. (2017) Drug delivery to the human and mouse uterus using immunoliposomes targeted to the oxytocin receptor. Am J Obstet Gynecol, 216(3):283 ehttps://doi.org/10.1016/j.ajog.2016.08.027.

  99. da Fonseca EB, Damiao R, Moreira DA. Preterm birth prevention. Best Pract Res Clin Obstet Gynaecol. 2020;69:40–9. https://doi.org/10.1016/j.bpobgyn.2020.09.003.

    Article  PubMed  Google Scholar 

  100. Zierden HC, Shapiro RL, DeLong K, Carter DM, Ensign LM. Next generation strategies for preventing preterm birth. Adv Drug Deliv Rev. 2021;174:190–209. https://doi.org/10.1016/j.addr.2021.04.021.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. https://doi.org/10.1016/j.addr.2013.11.009.

    Article  CAS  PubMed  Google Scholar 

  102. Joshi MD. Drug delivery during pregnancy: how can nanomedicine be used? Ther Deliv. 2017;8(12):1023–5. https://doi.org/10.4155/tde-2017-0084.

    Article  CAS  PubMed  Google Scholar 

  103. Fliedel L, Alhareth K, Mignet N, Fournier T, Andrieux K. Placental models for evaluation of Nanocarriers as Drug Delivery systems for pregnancy Associated disorders. Biomedicines. 2022;10(5). https://doi.org/10.3390/biomedicines10050936.

  104. Aengenheister L, Favaro RR, Morales-Prieto DM, Furer LA, Gruber M, Wadsack C, Markert UR, Buerki-Thurnherr T. Research on nanoparticles in human perfused placenta: state of the art and perspectives. Placenta. 2021;104:199–207. https://doi.org/10.1016/j.placenta.2020.12.014.

    Article  CAS  PubMed  Google Scholar 

  105. Zhou Y, Ji J, Hong F, Zhuang J, Wang L. Maternal exposure to Nanoparticulate Titanium Dioxide causes inhibition of hippocampal development involving dysfunction of the Rho/NMDAR signaling pathway in offspring. J Biomed Nanotechnol. 2019;15(4):839–47. https://doi.org/10.1166/jbn.2019.2723.

    Article  CAS  PubMed  Google Scholar 

  106. Ataei ML, Ebrahimzadeh-Bideskan AR. The effects of nano-silver and garlic administration during pregnancy on neuron apoptosis in rat offspring hippocampus. Iran J Basic Med Sci. 2014;17(6):411–8.

    PubMed  PubMed Central  Google Scholar 

  107. Hong F, Zhou Y, Ji J, Zhuang J, Sheng L, Wang L. Nano-TiO(2) inhibits development of the Central Nervous System and its mechanism in offspring mice. J Agric Food Chem. 2018;66(44):11767–74. https://doi.org/10.1021/acs.jafc.8b02952.

    Article  CAS  PubMed  Google Scholar 

  108. Su J, Duan X, Qiu Y, Zhou L, Zhang H, Gao M, Liu Y, Zou Z, Qiu J, Chen C. Pregnancy exposure of titanium dioxide nanoparticles causes intestinal dysbiosis and neurobehavioral impairments that are not significant postnatally but emerge in adulthood of offspring. J Nanobiotechnol. 2021;19(1):234. https://doi.org/10.1186/s12951-021-00967-5.

    Article  CAS  Google Scholar 

  109. Roset Bahmanyar E, Out HJ, van Duin M. Women and babies are dying from inertia: a collaborative framework for obstetrical drug development is urgently needed. Am J Obstet Gynecol. 2021;225(1):43–50. https://doi.org/10.1016/j.ajog.2021.03.024.

    Article  CAS  PubMed  Google Scholar 

  110. Moses AS, Kadam L, St Lorenz A, Baldwin MK, Morgan T, Hebert J, Park Y, Lee H, Demessie AA, Korzun T, et al. Nano-Theranostic modality for visualization of the Placenta and photo-hyperthermia for potential management of ectopic pregnancy. Small. 2023;19(2):e2202343. https://doi.org/10.1002/smll.202202343.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Figdraw (www.figdraw.com) for help in creating the schematic figure.

Funding

This work was funded by National Key Research and Development Program of China (2022YFC2704600), Central Government Guiding Local Science and Technology Development Foundation of Shandong Province (Grant No. YDZX2022096), National Natural Science Foundation of China (Grant No.81741038) and Jinan Science and Technology Program(Grant No.202134014).

Author information

Authors and Affiliations

Authors

Contributions

HY reviewed the literature and drafted the manuscript. SW made critical revisions. All authors read and approved the manuscript for publication.

Corresponding author

Correspondence to Shan Wang.

Ethics declarations

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Conflict of Interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, S. Actively Targeted Nanomedicines: A New Perspective for the Treatment of Pregnancy-Related Diseases. Reprod. Sci. 31, 2560–2575 (2024). https://doi.org/10.1007/s43032-024-01520-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-024-01520-z

Keywords

Navigation