Skip to main content
Log in

Etiology of Male Infertility: an Update

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Spermatogenesis is a complex process of germ cell division and differentiation that involves extensive cross-talk between the developing germ cells and the somatic testicular cells. Defective endocrine signaling and/or intrinsic defects within the testes can adversely affect spermatogenic progression, leading to subfertility/infertility. In recent years, male infertility has been recognized as a global public health concern, and research over the last few decades has elucidated the complex etiology of male infertility. Congenital reproductive abnormalities, genetic mutations, and endocrine/metabolic dysfunction have been demonstrated to be involved in infertility/subfertility in males. Furthermore, acquired factors like exposure to environmental toxicants and lifestyle-related disorders such as illicit use of psychoactive drugs have been shown to adversely affect spermatogenesis. Despite the large body of available scientific literature on the etiology of male infertility, a substantial proportion of infertility cases are idiopathic in nature, with no known cause. The inability to treat such idiopathic cases stems from poor knowledge about the complex regulation of spermatogenesis. Emerging scientific evidence indicates that defective functioning of testicular Sertoli cells (Sc) may be an underlying cause of infertility/subfertility in males. Sc plays an indispensable role in regulating spermatogenesis, and impaired functional maturation of Sc has been shown to affect fertility in animal models as well as humans, suggesting abnormal Sc as a potential underlying cause of reproductive insufficiency/failure in such cases of unexplained infertility. This review summarizes the major causes of infertility/subfertility in males, with an emphasis on infertility due to dysregulated Sc function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

ART:

Assisted reproductive techniques

CFTR:

Cystic fibrosis transmembrane conductance regulator

DSDs:

Disorders of sexual development

ED:

Erectile dysfunction

EDO:

Ejaculatory duct obstruction

FSH:

Follicle-stimulating hormone

Gc:

Germ cells

GnRH:

Gonadotropin-releasing hormone.

HHT:

Hypothalamic-hypophyseal-testicular

IHH:

Idiopathic hypogonadotropic hypogonadism

IVF:

in vitro Fertilization

LH:

Luteinizing hormone

PESA:

Percutaneous epididymal sperm aspiration

Sc:

Sertoli cells

SCOS:

Sertoli cell-only syndrome

SSC:

Spermatogonial stem cell

TDS:

Testicular dysgenesis syndrome

TESA:

Testicular sperm extraction

WHO:

World Health Organization

References

  1. Zegers-hochschild F, Adamson GD, Dyer S, et al. The international glossary on infertility and fertility care, 2017. Fertil Steril. 2017;108:393–406.

    PubMed  Google Scholar 

  2. Agarwal A, Baskaran S, Parekh N, et al. Male infertility. The Lancet. 2021;397:319–33.

    Google Scholar 

  3. Agarwal A, Mulgund A, Hamada A, et al. A unique view on male infertility around the globe. Reprod Biol Endocrinol. 2015;13. https://doi.org/10.1186/S12958-015-0032-1.

  4. Matzuk MM, Lamb DJ. The biology of infertility: research advances and clinical challenges. Nat Med. 2008;14:1197–213.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Zorrilla M, Yatsenko AN. The genetics of infertility: current status of the field. Curr Genet Med Rep. 2013;1:247–60.

    Google Scholar 

  6. Karavolos S, Panagiotopoulou N, Alahwany H, et al. An update on the management of male infertility. Obstet Gynaecol. 2020;22:267–74.

    Google Scholar 

  7. Griswold MD. 50 years of spermatogenesis: Sertoli cells and their interactions with germ cells. Biol Reprod. 2018;99:87–100.

    PubMed  PubMed Central  Google Scholar 

  8. Neto FTL, Bach PV, Najari BB, et al. Spermatogenesis in humans and its affecting factors. Semin Cell Dev Biol. 2016;59:10–26.

    PubMed  Google Scholar 

  9. Jan SZ, Hamer G, Repping S, et al. Molecular control of rodent spermatogenesis. Biochim Biophys Acta - Mol Basis Dis. 2012;1822:1838–50.

    CAS  Google Scholar 

  10. Witchel SF. Disorders of sex development. Best Pr Res Clin Obs Gynaecol. 2018;48:90–102.

    Google Scholar 

  11. Hwang K, Yatsenko AN, Jorgez JC, et al. Mendelian genetics of male infertility. Ann N Y Acad Sci. 2010;1214:E1–17.

    PubMed  PubMed Central  Google Scholar 

  12. Krausz C, Riera-Escamilla A. Genetics of male infertility. Nat Rev Urol. 2018;15:369–84.

    CAS  PubMed  Google Scholar 

  13. Martins AD, Majzoub A, Agawal A. Metabolic syndrome and male fertility. World J Men’s Heal. 2019;37:113–27.

    Google Scholar 

  14. Mima M, Greenwald D, Ohlander S. Environmental toxins and male fertility. Curr Urol Rep. 2018;19. https://doi.org/10.1007/s11934-018-0804-1.

  15. Harton GL, Tempest HG. Chromosomal disorders and male infertility. Asian J Androl. 2012;14(1):32–9.

    PubMed  Google Scholar 

  16. Ilacqua A, Izzo G, Emerenziani GP, et al. Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reprod Biol Endocrinol. 2018;16:1–11.

    Google Scholar 

  17. Hamada A, Esteves SC, Nizza M, et al. Unexplained male infertility: diagnosis and management. Int Braz J Urol. 2012;38(5):576–94.

    PubMed  Google Scholar 

  18. Gianotten J, Lombardi MP, Zwinderman AH, et al. Idiopathic impaired spermatogenesis: genetic epidemiology is unlikely to provide a short-cut to better understanding. Hum Reprod Update. 2004;10:533–9.

    PubMed  Google Scholar 

  19. Tournaye H. Male factor infertility and ART. Asian J Androl. 2012;14:103–8.

    PubMed  Google Scholar 

  20. Stephens SM, Arnett DM, Meacham RB. The use of in vitro fertilization in the management of male infertility: what the urologist needs to know. Rev Urol. 2013;15:154–60.

    PubMed  PubMed Central  Google Scholar 

  21. Esteves SC, Miyaoka R, Agarwal A. Sperm retrieval techniques for assisted reproduction. Int Braz J Urol. 2011;37:570–83.

    PubMed  Google Scholar 

  22. Spiller C, Koopman P, Bowles J. Sex determination in the mammalian germline. Annu Rev Genet. 2017;12:22.

    Google Scholar 

  23. Kashimada K, Koopman P. Sry: the master switch in mammalian sex determination. Development. 2010;137(23):3921–30. https://doi.org/10.1242/dev.048983.

    Article  CAS  PubMed  Google Scholar 

  24. Hanley NA, Hagan DM, Clement-Jones M, et al. SRY, SOX9, and DAX1 expression patterns during human sex determination and gonadal development. Mech Dev. 2000;91:403–7.

    CAS  PubMed  Google Scholar 

  25. Svingen T, Koopman P. Building the mammalian testis: origins, differentiation, and assembly of the component cell populations. Genes Dev. 2013;27:2409–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Bonomi M, Rochira V, Pasquali D, et al. Klinefelter syndrome (KS): genetics, clinical phenotype and hypogonadism. J Endocrinol Invest. 2017;40(2):123–34.

    CAS  PubMed  Google Scholar 

  27. Klinefelter H, Reifenstein E, Albright F. Syndrome characterized by Gy-necomastia, aspermatogenesis without A-Leydigism, and in-creased excretion of follicle-stimulating hormone. J Clin Endocrinol Metab. 1942;2:615–27.

    CAS  Google Scholar 

  28. Shiraishi K, Matsuyama H. Klinefelter syndrome: from pediatrics to geriatrics. Reprod Med Biol. 2019;18:140–50.

    PubMed  Google Scholar 

  29. Terribile M, Stizzo M, Manfredi C, et al. 46, XX testicular disorder of sex development (DSD): a case report and systematic review. Medicina (Kaunas). 2019;55(7):371.

    PubMed  Google Scholar 

  30. Grinspon RP, Rey RA. Disorders of sex development with testicular differentiation in SRY-negative 46, XX individuals: clinical and genetic aspects. Sex Dev. 2016;10:1–11.

    CAS  PubMed  Google Scholar 

  31. Adrião M, Ferreira S, Santos Silva R, et al. 46, XX male disorder of sexual development. Clin Pediar Endocrinol. 2020;29(1):43–5.

    Google Scholar 

  32. Stouffs K, Lissens W. X chromosomal mutations and spermatogenic failure. Biochim Biophys Acta - Mol Basis Dis. 2012;1822:1864–72.

    CAS  Google Scholar 

  33. Hughes IA, Davies JD, Bunch TI, et al. Androgen insensitivity syndrome. Lancet. 2012;380:1419–28.

    CAS  PubMed  Google Scholar 

  34. Mendoza N, Motos MA. Androgen insensitivity syndrome. Gynecol Endocrinol. 2013;29:1–5.

    CAS  PubMed  Google Scholar 

  35. Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol. 2018;16:1–24.

    Google Scholar 

  36. Krausz C, Forti G, Mcelreavey K. The Y chromosome and male fertility and infertility. Int J Androl. 2003;26:70–5.

    PubMed  Google Scholar 

  37. Disteche CM, Casanova M, Saal H, et al. Small deletions of the short arm of the Y chromosome in 46, XY females. Proc Natl Acad Sci U S A. 1986;83:7841–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Fan Y, Silber SJ. Y chromosome infertility. In: Adam MP, Feldman J, Mirzaa GM, et al. (eds.) GeneReviews [Internet]. Seattle (WA): University of Washington, Seattle; 2002. 1993–2023.

  39. Mierla D, Jardan D, Stoian V. Chromosomal abnormality in men with impaired spermatogenesis. Int J Fertil Steril. 2014;8:35–42.

    PubMed  PubMed Central  Google Scholar 

  40. Tiepolo L, Zuffardi O. Localization of factors controlling spermatogenesis in the nonfluorescent portion of the human y chromosome long arm. Hum Genet. 1976;34:119–24.

    CAS  PubMed  Google Scholar 

  41. Navarro-Costa P, Plancha CE, Gonaçlves J. Genetic dissection of the AZF regions of the human Y chromosome: thriller or filler for male (in)fertility? J Biomed Biotechnol. 2010. https://doi.org/10.1155/2010/936569.

  42. Ozdemir O, Gul ÆE. SRY and AZF gene variation in male infertility: a cytogenetic and molecular approach. Int Urol Nephrol. 2007;39(4):1183–9.

    CAS  PubMed  Google Scholar 

  43. Krausz C, Degl’Innocenti S, Nuti F, et al. Natural transmission of USP9Y gene mutations: a new perspective on the role of AZFa genes in male fertility. Hum Mol Genet. 2006;15:2673–81.

    CAS  PubMed  Google Scholar 

  44. Foresta C, Ferlin A, Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Mol Genet. 2000;9:1161–9.

    CAS  PubMed  Google Scholar 

  45. Ehrmann I, Dalgliesh C, Tsaousi A, et al. Haploinsufficiency of the germ cell-specific nuclear RNA binding protein hnRNP G-T prevents functional spermatogenesis in the mouse. Hum Mol Genet. 2008;17:2803–18.

    CAS  PubMed  Google Scholar 

  46. Stouffs K, Lissens W, Verheyen G, et al. Expression pattern of the Y-linked PRY gene suggests a function in apoptosis but not in spermatogenesis. Mol Hum Reprod. 2004;10:15–21.

    CAS  PubMed  Google Scholar 

  47. Ferlin A, Tessari A, Ganz F, et al. Association or partial AZFc region deletions with spermatogenic impairment and male infertility. J Med Genet. 2005;42:209–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Skakkebaek NE, Rajpert-De Meyts E, Buck Louis GM, et al. Male reproductive disorders and fertility trends: Influences of environment and genetic susceptibility. Physiol Rev. 2015;96:55–97.

    PubMed Central  Google Scholar 

  49. Abeyaratne MR, Aherne WA, Scott JE. The vanishing testis. Lancet. 1969;294:822–4.

    Google Scholar 

  50. Brauner R, Neve M, Allali S, et al. Clinical, biological and genetic analysis of anorchia in 26 boys. PLoS One. 2011;6:4–8.

    Google Scholar 

  51. Baigorri BF, Dixon RG. Varicocele: a review. Semin Intervent Radiol. 2016;33(03):170–6. https://doi.org/10.1055/s-0036-1586147.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Singh R, Hamada AJ, Bukavina L, et al. Physical deformities relevant to male infertility. Nat Rev Urol. 2012;9:156–74.

    CAS  PubMed  Google Scholar 

  53. Agarwal A, Prabakaran S, Allamaneni SSSR. Relationship between oxidative stress, varicocele and infertility: a meta-analysis. Reprod Biomed Online. 2006;12:630–3.

    CAS  PubMed  Google Scholar 

  54. Wang YJ, Zhang RQ, Lin YJ, et al. Relationship between varicocele and sperm DNA damage and the effect of varicocele repair: a meta-analysis. Reprod Biomed Online. 2012;25:307–14.

    CAS  PubMed  Google Scholar 

  55. Marmar JL. The pathophysiology of varicoceles in the light of current molecular and genetic information. Hum Reprod Update. 2001;7:461–72.

    CAS  PubMed  Google Scholar 

  56. Cocuzza M, Athayde KS, Alvarenga C, et al. Grade 3 varicocele in fertile men: a different entity. J Urol. 2012;187:1363–8.

    PubMed  Google Scholar 

  57. Steckel J, Dicker AP, Goldstein M. Relationship between varicocele size and response to varicocelectomy. J Urol. 1993;149:769–71.

    CAS  PubMed  Google Scholar 

  58. Fisher JS, Kim E. Azoospermia: vasal agenesis. Asian J Androl. 2019;21:1–4.

    Google Scholar 

  59. Vazquez-Levin MH, Kupchik GS, Torres Y, et al. Cystic fibrosis and congenital agenesis of the vas deferens, antisperm antibodies and CF-genotype. J Reprod Immunol. 1994;27:199–212.

    CAS  PubMed  Google Scholar 

  60. Yu J, Chen Z, Ni Y, et al. CFTR mutations in men with congenital bilateral absence of the vas deferens (CBAVD): a systemic review and meta-analysis. Hum Reprod. 2012;27:25–35.

    CAS  PubMed  Google Scholar 

  61. Khan MJ, Pollock N, Jiang H, et al. X-linked ADGRG2 mutation and obstructive azoospermia in a large Pakistani family. Sci Rep. 2018;8:1–7.

    Google Scholar 

  62. van Driel MF. Physiology of penile erection-a brief history of the scientific understanding up till the eighties of the 20th century. Sex Med. 2015;3:349–57.

    PubMed  PubMed Central  Google Scholar 

  63. Kessler A, Sollie S, Challacombe B, et al. The global prevalence of erectile dysfunction: a review. BJU Int. 2019;124:587–99.

    PubMed  Google Scholar 

  64. Toda N, Ayajiki K, Okamura T. Nitric oxide and penile erectile function. Pharmacol Ther. 2005;106:233–66.

    CAS  PubMed  Google Scholar 

  65. Yafi FA, Jenkins L, Albersen M, et al. Erectile dysfunction. Nat Rev Dis Prim. 2016;2:16003.

    PubMed  Google Scholar 

  66. Otani T. Clinical review of ejaculatory dysfunction. Reprod Med Biol. 2019;18:331–43.

    PubMed  PubMed Central  Google Scholar 

  67. Wright LN, Moghalu OI, Das R, et al. Erectile dysfunction and treatment: an analysis of associated chronic health conditions. Urology. 2021;157:148–54.

    PubMed  Google Scholar 

  68. Karakus S, Burnett AL. The medical and surgical treatment of erectile dysfunction: a review and update. Can J Urol. 2020;27(S3):28–35.

    Google Scholar 

  69. Mazzilli F. Erectile dysfunction: causes, diagnosis and treatment: an update. J Clin Med. 2022;11:6429.

    PubMed  PubMed Central  Google Scholar 

  70. Kim S, Cho MC, Cho SY, et al. Novel emerging therapies for erectile dysfunction. World J Men’s Health. 2020;38:1–17.

    Google Scholar 

  71. Albersen M, Linsen L, Tinel H, et al. Synergistic effects of bay 60–4552 and vardenafil on relaxation of corpus cavernosum tissue of patients with erectile dysfunction and clinical phosphodiesterase type 5 inhibitor failure. J Sex Med. 2013;10:1268–77.

    CAS  PubMed  Google Scholar 

  72. Haahr MK, Jensen CH, Toyserkani NM, et al. Safety and potential effect of a single intracavernous injection of autologous adipose-derived regenerative cells in patients with erectile dysfunction following radical prostatectomy: an open-label phase I clinical trial. EBioMedicine. 2016;5:204–10.

    PubMed  PubMed Central  Google Scholar 

  73. Chung E, Bailey W, Wang J. A prospective, randomized, double-blinded, clinical trial using a second-generation duolith SD1 low-intensity shockwave machine in males with vascular erectile dysfunction. World J Mens Health. 2023;41(1):94–100.

    PubMed  Google Scholar 

  74. Plant TM. The hypothalamo-pituitary-gonadal axis. J Endocrinol. 2015;226:T41–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Majumdar SS, Winters SJ, Plant TM. A study of the relative roles of follicle-stimulating hormone and luteinizing hormone in the regulation of testicular inhibin secretion in the rhesus monkey (Macaca mulatta). Endocrinology. 1997;138:1363–73.

    CAS  PubMed  Google Scholar 

  76. Meachem SJ, Nieschlag E, Simoni M. Inhibin B in male reproduction: pathophysiology and clinical relevance. Eur J Endocrinol. 2001;145:561–71.

    CAS  PubMed  Google Scholar 

  77. Boehm U, Bouloux PM, Dattani MT, et al. Expert consensus document: European consensus statement on congenital hypogonadotropic hypogonadism-pathogenesis, diagnosis and treatment. Nat Rev Endocrinol. 2015;11:547–64.

    PubMed  Google Scholar 

  78. Dodé C, Hardelin JP. Kallmann syndrome. Eur J Hum Genet. 2009;17:139–46.

    PubMed  Google Scholar 

  79. Lima Amato LG, Latronico AC, Gontijo Silveira LF. Molecular and genetic aspects of congenital isolated hypogonadotropic hypogonadism. Endocrinol Metab Clin North Am. 2017;46:283–303.

    PubMed  Google Scholar 

  80. Chelaghma N, Rajkanna J, Trotman J, et al. Normosmic idiopathic hypogonadotrophic hypogonadism due to a rare KISS1R gene mutation. Endocrinol Diabetes Metab Case Reports. 2018;2018:1–4.

    Google Scholar 

  81. Sagi SV, Joshi H, Whiles E, et al. Normosmic idiopathic hypogonadotropic hypogonadism due to a novel gnrh1 variant in two siblings. Endocrinol Diabetes Metab Case Reports. 2020;2020:1–5.

    Google Scholar 

  82. Kim S-H. Congenital hypogonadotropic hypogonadism and Kallmann syndrome: past, present, and future. Org Endocrinol Metab. 2015;30:456–66.

    Google Scholar 

  83. Çiftci N, Akıncı A, Akbulut E, et al. Clinical characteristics and genetic analyses of patients with idiopathic hypogonadotropic hypogonadism. JCRPE J Clin Res Pediatr Endocrinol. 2023;15:160–71.

    PubMed  Google Scholar 

  84. Hara LO, Ph D, Smith LB, et al. Androgen receptor roles in spermatogenesis and infertility. Best Pract Res Clin Endocrinol Metab. 2015;29:595–605.

    Google Scholar 

  85. Kang H, McGinly J, Zhu Y, et al. 5α-reductase-2 deficiency’s effect on human fertility Hey-Joo. Fertil Steril. 2014;101:310–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Martens JWM, Verhoef-Post M, Abelin N, et al. A homozygous mutation in the luteinizing hormone receptor causes partial leydig cell hypoplasia: Correlation between receptor activity and phenotype. Mol Endocrinol. 1998;12:775–84.

    CAS  PubMed  Google Scholar 

  87. Latronico AC. Naturally occurring mutations of the luteinizing hormone receptor gene affecting reproduction. Semin Reprod Med. 2000;18:17–20.

    CAS  PubMed  Google Scholar 

  88. Grossmann M, Wittert GA. Dysregulation of the hypothalamic-pituitary-testicular axis due to energy deficit. J Clin Endocrinol Metab. 2021;106:E4861–71.

    PubMed  Google Scholar 

  89. Veldhuis JD, Iranmanesh A, Evans WS, et al. Amplitude suppression of the pulsatile mode of immunoradiometric luteinizing hormone release in fasting-induced hypoandrogenemia in normal men. J Clin Endocrinol Metab. 1993;76:587–93.

    CAS  PubMed  Google Scholar 

  90. WHO. Obesity: preventing and managing the global epidemic. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1-253. https://pubmed.ncbi.nlm.nih.gov/11234459/.

  91. Salvio G, Ciarloni A, Cutini M, et al. Metabolic syndrome and male fertility: beyond heart consequences of a complex cardiometabolic endocrinopathy. Int J Mol Sci. 2022; 23:5497.

  92. Chooi YC, Ding C, Magkos F. The epidemiology of obesity ☆. Metabolism. 2019;92:6–10.

    CAS  PubMed  Google Scholar 

  93. Rochlani Y, Pothineni NV, Kovelamudi S, et al. Metabolic syndrome: pathophysiology, management, and modulation by natural compounds. Ther Adv Cardiovasc Dis. 2017;11:215–25.

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Sun K, Liu J, Ning G. Active smoking and risk of metabolic syndrome: a meta-analysis of prospective studies. PLoS One. 2012;7. https://doi.org/10.1371/JOURNAL.PONE.0047791.

  95. Åberg F, Byrne CD, Pirola CJ, et al. Alcohol consumption and metabolic syndrome: clinical and epidemiological impact on liver disease. Journal of Hepatology. 2023;78:191-206. https://doi.org/10.1016/j.jhep.2022.08.030.

  96. Zhao L, Pang A. Effects of metabolic syndrome on semen quality and circulating sex hormones: a systematic review and meta-analysis. Front Endocrinol (Lausanne). 2020;11:544553.

    Google Scholar 

  97. Leisegang K, Sengupta P, Agarwal A, et al. Obesity and male infertility: mechanisms and management. Andrologia. 2021;53:1–14.

    Google Scholar 

  98. Yi X, Tang D, Cao S, et al. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice. Oxidative Medicine and Cellular Longevity. 2020;2020:3071658. https://doi.org/10.1155/2020/3071658.

  99. Guerro-Millo M. Adipose tissue and adipokines: for better or worse. Diabetes Metab. 2004;30:13–9.

    Google Scholar 

  100. Elfassy Y, Bastard JP, McAvoy C, et al. Adipokines in semen: physiopathology and effects on spermatozoas. Int J Endocrinol. 2018. https://doi.org/10.1155/2018/3906490.

  101. Guerrero-Bosagna C, Skinner MK. Environmentally induced epigenetic transgenerational inheritance of male infertility. Curr Opin Genet Dev. 2014;26:79–88.

    CAS  PubMed  Google Scholar 

  102. Mannucci A, Argento FR, Fini E, et al. The impact of oxidative stress in male infertility. Front Mol Biosci. 2022;8. https://doi.org/10.3389/FMOLB.2021.799294.

  103. Wolff H. The biologic significance of white blood cells in semen. Fertil Steril. 1995;63:1143–57.

    CAS  PubMed  Google Scholar 

  104. Koppers AJ, De Iuliis GN, Finnie JM, et al. Significance of mitochondrial reactive oxygen species in the generation of oxidative stress in spermatozoa. J Clin Endocrinol Metab. 2008;93:3199–207.

    CAS  PubMed  Google Scholar 

  105. Martins AD, Agarwal A. Oxidation reduction potential: a new biomarker of male infertility. Panminerva Med. 2019;61:108–17.

    PubMed  Google Scholar 

  106. Agarwal A, Majzoub A. Laboratory tests for oxidative stress. Indian J Urol. 2017;33:199.

    PubMed  PubMed Central  Google Scholar 

  107. Gambera L, Stendardi A, Ghelardi C, et al. Effects of antioxidant treatment on seminal parameters in patients undergoing in vitro fertilization. Arch Ital di Urol Androl organo Uff [di] Soc Ital di Ecogr Urol e Nefrol. 2019;91:187–90.

    CAS  Google Scholar 

  108. Alahmar AT, Calogero AE, Sengupta P, et al. Coenzyme Q10 improves sperm parameters, oxidative stress markers and sperm DNA fragmentation in infertile patients with idiopathic oligoasthenozoospermia. World J Mens Health. 2021;39:346.

    PubMed  Google Scholar 

  109. Majzoub A, Agarwal A. Systematic review of antioxidant types and doses in male infertility: benefits on semen parameters, advanced sperm function, assisted reproduction and live-birth rate. Arab J Urol. 2018;16:113–24.

    PubMed  PubMed Central  Google Scholar 

  110. Steiner AZ, Hansen KR, Barnhart KT, et al. The effect of antioxidants on male factor infertility: the MOXI randomized clinical trial. Fertil Steril. 2020;113:552.

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Allis CD, Jenuwein T. The molecular hallmarks of epigenetic control. Nat Rev Genet. 2016;17:487–500.

    CAS  PubMed  Google Scholar 

  112. Rajender S, Avery K, Agarwal A. Epigenetics, spermatogenesis and male infertility. Mutat Res - Rev Mutat Res. 2011;727:62–71.

    CAS  Google Scholar 

  113. Tahmasbpour Marzouni E, Ilkhani H, Beigi Harchegani A, et al. Epigenetic modifications, a new approach to male infertility etiology: a review. Int J Fertil Steril. 2022;16(1):1–9.

    CAS  Google Scholar 

  114. Anway MD, Cupp AS, Uzumcu N, et al. Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science. 2005;308:1466–9.

    CAS  PubMed  Google Scholar 

  115. Stuppia L, Franzago M, Ballerini P, et al. Epigenetics and male reproduction: the consequences of paternal lifestyle on fertility, embryo development, and children lifetime health. Clin Epigenetics. 2015;7:1–15.

    Google Scholar 

  116. Rotondo JC, Lanzillotti C, Mazziotta C, et al. Epigenetics of male infertility: the role of DNA methylation. Front Cell Dev Biol. 2021;9. https://doi.org/10.3389/fcell.2021.689624.

  117. Von Meyenn F, Reik W. Forget the parents: epigenetic reprogramming in human germ cells. Cell. 2015;161:1248–51.

    Google Scholar 

  118. Guo F, Yan L, Guo H, et al. The Transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161:1437–52.

    CAS  PubMed  Google Scholar 

  119. Champroux A, Cocquet J, Henry-Berger J, et al. A decade of exploring the mammalian sperm epigenome: paternal epigenetic and transgenerational inheritance. Front Cell Dev Biol. 2018;6. https://doi.org/10.3389/fcell.2018.00050.

  120. Tang WWC, Dietmann S, Irie N, et al. A unique gene regulatory network resets the human germline epigenome for development. Cell. 2015;161:1453–67.

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Gkountela S, Zhang KX, Shafiq TA, et al. DNA demethylation dynamics in the human prenatal germline. Cell. 2015;161:1425–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  122. Aston KI, Punj V, Liu L, et al. Genome-wide sperm deoxyribonucleic acid methylation is altered in some men with abnormal chromatin packaging or poor in vitro fertilization embryogenesis. Fertility and Sterility. 2012;97(2):285-292.e4. https://doi.org/10.1016/j.fertnstert.2011.11.008.

  123. Barau J, Teissandier A, Zamudio N, et al. The DNA methyltransferase DNMT3C protects male germ cells from transposon activity. Science. 2016;354:909–12.

    CAS  PubMed  Google Scholar 

  124. Dura M, Teissandier A, Armand M, et al. DNMT3A-dependent DNA methylation is required for spermatogonial stem cells to commit to spermatogenesis. Nat Genet. 2022;54:469–80.

    CAS  PubMed  Google Scholar 

  125. Khambata K, Raut S, Deshpande S, et al. DNA methylation defects in spermatozoa of male partners from couples experiencing recurrent pregnancy loss. Hum Reprod. 2021;36:48–60.

    CAS  PubMed  Google Scholar 

  126. Tang Q, Pan F, Yang J, et al. Idiopathic male infertility is strongly associated with aberrant DNA methylation of imprinted loci in sperm: a case-control study. Clin Epigenetics. 2018;10:1–10.

    Google Scholar 

  127. Houshdaran S, Cortessis VK, Siegmund K, et al. Widespread epigenetic abnormalities suggest a broad DNA methylation erasure defect in abnormal human sperm. PLoS One. 2007;2:e1289.

    PubMed  PubMed Central  Google Scholar 

  128. Khazamipour N, Noruzinia M, Fatehmanesh P, et al. MTHFR promoter hypermethylation in testicular biopsies of patients with non-obstructive azoospermia: the role of epigenetics in male infertility. Hum Reprod. 2009;24:2361–4.

    CAS  PubMed  Google Scholar 

  129. Karaca MZ, Konac E, Yurteri B, et al. Association between methylenetetrahydrofolate reductase (MTHFR) gene promoter hypermethylation and the risk of idiopathic male infertility. Andrologia. 2017;49:1–6.

    Google Scholar 

  130. Ni W, Pan C, Pan Q, et al. Methylation levels of IGF2 and KCNQ1 in spermatozoa from infertile men are associated with sperm DNA damage. Andrologia. 2019;51:e13239.

    PubMed  Google Scholar 

  131. Santi D, De Vincentis S, Magnani E, et al. Impairment of sperm DNA methylation in male infertility: a meta-analytic study. Andrology. 2017;5:695–703.

    CAS  PubMed  Google Scholar 

  132. Oakes CC, Kelly TLJ, Robaire B, et al. Adverse effects of 5-aza-2′-deoxycytidine on spermatogenesis include reduced sperm function and selective inhibition of de novo DNA methylation. J Pharmacol Exp Ther. 2007;322:1171–80.

    CAS  PubMed  Google Scholar 

  133. Cannarella R, Crafa A, Barbagallo F, et al. H19 sperm methylation in male infertility: a systematic review and meta-analysis. Int J Mol Sci. 2023;24:7224.

    CAS  PubMed  PubMed Central  Google Scholar 

  134. Schon SB, Luense LJ, Wang X, et al. Histone modification signatures in human sperm distinguish clinical abnormalities. J Assist Reprod Genet. 2019;36:267–75.

    PubMed  Google Scholar 

  135. Oliva R. Protamines and male infertility. Hum Reprod Update. 2006;12:417–35.

    CAS  PubMed  Google Scholar 

  136. Bao J, Bedford MT. Epigenetic regulation of the histone-to-protamine transition during spermiogenesis. Reproduction. 2016;151:R55.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Nanassy L, Liu L, Griffin J, et al. The clinical utility of the protamine 1/protamine 2 ratio in sperm. Protein Pept Lett. 2012;18:772–7.

    Google Scholar 

  138. Mengual L, Ballescà JL, Ascaso C, et al. Marked differences in protamine content and P1/P2 ratios. J Androl. 2003;24:438–47.

    PubMed  Google Scholar 

  139. Hamed MA, Ekundina VO, Akhigbe RE. Psychoactive drugs and male fertility: impacts and mechanisms. Reprod Biol Endocrinol. 2023;21:1–12.

    Google Scholar 

  140. Payne KS, Mazur DJ, Hotaling JM, et al. Cannabis and male fertility: a systematic review. J Urol. 2019;202:674–81.

    PubMed  PubMed Central  Google Scholar 

  141. Teixeira TA, Iori I, Andrade G, et al. Marijuana is associated with a hormonal imbalance among several habits related to male infertility: a retrospective study. Front Reprod Heal. 2022;4:820451.

    Google Scholar 

  142. Nudmamud-Thanoi S, Thanoi S. Methamphetamine induces abnormal sperm morphology, low sperm concentration and apoptosis in the testis of male rats. Andrologia. 2011;43:278–82.

    CAS  PubMed  Google Scholar 

  143. Hurd WW, Kelly MS, Ohl DA, et al. The effect of cocaine on sperm motility characteristics and bovine cervical mucus penetration. Fertil Steril. 1992;57:178–82.

    CAS  PubMed  Google Scholar 

  144. Folorunso Ajayi A, Eghoghosoa Akhigbe R. Codeine-induced sperm DNA damage is mediated predominantly by oxidative stress rather than apoptosis. Redox Report. 2020;25(1):33-40. https://doi.org/10.1080/13510002.2020.1752003.

  145. Akhigbe R, Ajayi A. Testicular toxicity following chronic codeine administration is via oxidative DNA damage and up-regulation of NO/TNF-α and caspase 3 activities. PLoS ONE. 2020;15(3):e0224052 https://doi.org/10.1371/journal.pone.0224052.

  146. Ahmed MA, Kurkar A. Effects of opioid (tramadol) treatment on testicular functions in adult male rats: The role of nitric oxide and oxidative stress. Clin Exp Pharmacol Physiol. 2014;41:317–23.

    CAS  PubMed  Google Scholar 

  147. Alagbonsi IA, Olayaki LA. Melatonin attenuates Δ9-tetrahydrocannabinol-induced reduction in rat sperm motility and kinematics in-vitro. Reprod Toxicol. 2018;77:62–9.

    CAS  PubMed  Google Scholar 

  148. Hedges JC, Hanna CB, Bash JC, et al. Chronic delta-9-tetrahydrocannabinol exposure impacts testicular volume and male reproductive health in rhesus macaques. Fertil Steril. 2022;117:698.

    CAS  PubMed  PubMed Central  Google Scholar 

  149. Trabert B, Sigurdson AJ, Sweeney AM, et al. Marijuana use and testicular germ cell tumors. Cancer. 2011;117(4):848-853. https://doi.org/10.1002/cncr.25499.

  150. Kolodny RC, Masters WH, Kolodner RM, et al. Depression of plasma testosterone levels after chronic intensive marihuana use. N Engl J Med. 1974;290:872–874.https://doi.org/10.1056/NEJM197404182901602

  151. Gundersen TD, Jørgensen N, Andersson AM, et al. Association between use of marijuana and male reproductive hormones and semen quality: a study among 1,215 healthy young men. Am J Epidemiol. 2015;182:473–81.

    PubMed  Google Scholar 

  152. Van Heertum K, Rossi B. Alcohol and fertility: how much is too much? Fertility Research and Practice. 2017;3:10. https://doi.org/10.1186/s40738-017-0037-x.

  153. Grover S, Mattoo SK, Pendharkar S, et al. Sexual dysfunction in patients with alcohol and opioid dependence. Indian J Psychol Med. 2014;36. https://doi.org/10.4103/0253-7176.140699.

  154. Condorelli RA, Calogero AE, Vicari E, et al. Chronic consumption of alcohol and sperm parameters: our experience and the main evidences. Andrologia. 2015;47:368–79.

    CAS  PubMed  Google Scholar 

  155. Curtis KM, Savitz DA, Arbuckle TE. Effects of cigarette smoking, caffeine consumption, and alcohol intake on fecundability. Am J Epidemiol. 1997;146:32–41.

    CAS  PubMed  Google Scholar 

  156. Olsen J, Bolumar F, Boldsen J, et al. Does moderate alcohol intake reduce fecundability? A European multicenter study on infertility and subfecundity. Alcohol Clin Exp Res. 1997;21:206–12.

    CAS  PubMed  Google Scholar 

  157. Jensen TK, Swan S, Jørgensen N, et al. Alcohol and male reproductive health: a cross-sectional study of 8344 healthy men from Europe and the USA. Hum Reprod. 2014;29:1801–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Wohlfahrt-Veje C, Main KM, Skakkebæk NE. Testicular dysgenesis syndrome: foetal origin of adult reproductive problems. Clin Endocrinol (Oxf). 2009;71:459–65.

    PubMed  Google Scholar 

  159. Sharpe RM, Skakkebaek NE. Testicular dysgenesis syndrome: mechanistic insights and potential new downstream effects. Fertil Steril. 2008;89(2, Supplement):e33-e38. https://doi.org/10.1016/j.fertnstert.2007.12.026.

  160. Rijlaarsdam MA, Looijenga LHJ. An oncofetal and developmental perspective on testicular germ cell cancer. Semin Cancer Biol. 2014;29:59–74.

    CAS  PubMed  Google Scholar 

  161. Braga LH, Lorenzo AJ. Cryptorchidism: a practical review for all community healthcare providers. Can Urol Assoc J. 2017;11:S26–32.

    PubMed  PubMed Central  Google Scholar 

  162. Rodprasert W, Virtanen HE, Mäkelä JA, et al. Hypogonadism and cryptorchidism. Front Endocrinol (Lausanne). 2020;10:1–27.

    Google Scholar 

  163. Gurney JK, Mcglynn KA, Stanley J, et al. Risk factors for cryptorchidism. Nat Rev Urol. 2017;14:534–48.

    PubMed  PubMed Central  Google Scholar 

  164. Bay K, Andersson AM. Human testicular insulin-like factor 3: in relation to development, reproductive hormones and andrological disorders. Int J Androl. 2011;34:97–109.

    CAS  PubMed  Google Scholar 

  165. Hutson JM, Southwell BR, Li R, et al. The regulation of testicular descent and the effects of cryptorchidism. Endocr Rev. 2013;34:725–52.

    CAS  PubMed  Google Scholar 

  166. Mieusset R, Fouda PJ, Vaysse P, et al. Increase in testicular temperature in case of cryptorchidism in boys. Fertil Steril. 1993;59:1319–21.

    CAS  PubMed  Google Scholar 

  167. Zhang X-S, Zhang ZH, Guo SH, et al. Activation of extracellular signal-related kinases 1 and 2 in Sertoli cells in experimentally cryptorchid rhesus monkeys. Asian J Androl. 2006;8:265–72.

    PubMed  Google Scholar 

  168. Ahotupa M, Huhtaniemi I. Impaired detoxification of reactive oxygen and consequent oxidative stress in experimentally cryptorchid rat testis. Biol Reprod. 1992;46:1114–8.

    CAS  PubMed  Google Scholar 

  169. Zivkovic D, Bica DTG, Hadziselimovic F. Relationship between adult dark spermatogonia and secretory capacity of Leydig cells in cryptorchidism. BJU Int. 2007;100:1147–9.

    PubMed  Google Scholar 

  170. Kim SO, Na SW, Yu HS, et al. Epididymal anomalies in boys with undescended testis or hydrocele: significance of testicular location. BMC Urol. 2015;15:1–4.

    Google Scholar 

  171. de Mello ST, Hinton BT. We, the developing rete testis, efferent ducts, and Wolffian duct, all hereby agree that we need to connect. Andrology. 2019;7:581–7.

    Google Scholar 

  172. Alam S, Cantwell M, Cardwell C, et al. Maternal body mass index (BMI) and risk of testicular cancer in male offspring: a systematic review and meta-analysis. Cancer Epidemiol. 2010;34(5):509–15.

    PubMed  PubMed Central  Google Scholar 

  173. Cargnelutti F, Di Nisio A, Pallotti F, et al. Effects of endocrine disruptors on fetal testis development, male puberty, and transition age. Endocrine. 2021;72:358–74.

    CAS  PubMed  Google Scholar 

  174. Eskenazi B, Warner M, Brambilla P, et al. The Seveso accident: a look at 40 years of health research and beyond. Env Int. 2018;121:71–84.

    CAS  Google Scholar 

  175. Håkonsen LB, Ernst A, Ramlau-Hansen CH. Maternal cigarette smoking during pregnancy and reproductive health in children: a review of epidemiological studies. Asian J Androl. 2014;16:39–49.

    PubMed  Google Scholar 

  176. Fowler PA, Cassie S, Rhind SM, et al. Maternal smoking during pregnancy specifically reduces human fetal desert hedgehog gene expression during testis development. J Clin Endocrinol Metab. 2008;93:619–26.

    CAS  PubMed  Google Scholar 

  177. Tallon E, O’Donovan L, Delanty N. Reversible male infertility with valproate use: a review of the literature. Epilepsy Behav Reports. 2021;16:100446.

    Google Scholar 

  178. El Osta R, Almont T, Diligent C, et al. Anabolic steroids abuse and male infertility. Basic Clin Androl. 2016;26:1–8.

    Google Scholar 

  179. Kenney LB, Laufer MR, Grant FD, et al. High risk of infertility and long term gonadal damage in males treated with high dose cyclophosphamide for sarcoma during childhood. Cancer. 2001;91:613–21.

    CAS  PubMed  Google Scholar 

  180. De Falco M, Forte M, Laforgia V. Estrogenic and anti-androgenic endocrine disrupting chemicals and their impact on the male reproductive system. Front Environ Sci. 2015;3. https://doi.org/10.3389/fenvs.2015.00003.

  181. Wan H, Mruk DD, Wong CK, et al. Targeting testis-specific proteins to inhibit spermatogenesis: lesson from endocrine disrupting chemicals. Expert Opin Ther Targets. 2013;17:839–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  182. Grandjean P, Grønlund C, Kjær IM, et al. Reproductive hormone profile and pubertal development in 14-year-old boys prenatally exposed to polychlorinated biphenyls. Reprod Toxicol. 2012;34:498.

    CAS  PubMed  PubMed Central  Google Scholar 

  183. Jana NR, Sarkar S, Ishizuka M, et al. Cross-talk between 2,3,7,8-tetrachlorodibenzo-p-dioxin and testosterone signal transduction pathways in LNCaP prostate cancer cells. Biochem Biophys Res Commun. 1999;256:462–8.

    CAS  PubMed  Google Scholar 

  184. Morrow D, Qin C, Smith R, et al. Aryl hydrocarbon receptor-mediated inhibition of LNCaP prostate cancer cell growth and hormone-induced transactivation. J Steroid Biochem Mol Biol. 2004;88:27–36.

    CAS  PubMed  Google Scholar 

  185. Ma JY, Ji JJ, Ding Q, et al. The effects of carbon disulfide on male sexual function and semen quality. Toxicol Ind Health. 2010;26:375–82.

    CAS  PubMed  Google Scholar 

  186. Sokol RZ, Kraft P, Fowler IM, et al. Exposure to environmental ozone alters semen quality. Environ Health Perspect. 2006;114:360–5.

    CAS  PubMed  Google Scholar 

  187. Sadler-Riggleman I, Klukovich R, Nilsson E, et al. Epigenetic transgenerational inheritance of testis pathology and Sertoli cell epimutations: generational origins of male infertility. Environ Epigenetics. 2019;5. https://doi.org/10.1093/eep/dvz013.

  188. Chabner BA, Roberts TG. Chemotherapy and the war on cancer. Nat Rev Cancer. 2005;5:65–72.

    CAS  PubMed  Google Scholar 

  189. Baskar R, Lee KA, Yeo R, et al. Cancer and radiation therapy: current advances and future directions. Int J Med Sci. 2012;9:193–9.

    PubMed  PubMed Central  Google Scholar 

  190. Meistrich ML. Effects of chemotherapy and radiotherapy on spermatogenesis in humans. Fertil Steril. 2013;100(5):1180-6. https://doi.org/10.1016/j.fertnstert.2013.08.010.The.

  191. França LR, Hess RA, Dufour JM, et al. The Sertoli cell: one hundred fifty years of beauty and plasticity. Andrology. 2016;4:189–212.

    PubMed  PubMed Central  Google Scholar 

  192. Smith LB, O’Shaughnessy PJ, et al. Cell-specific ablation in the testis: what have we learned? Andrology. 2015;3(6):1035-1049. https://doi.org/10.1111/andr.12107.

  193. DeFalco T, Bhattacharya I, Williams AV, et al. Yolk-sac-derived macrophages regulate fetal testis vascularization and morphogenesis. Proc Natl Acad Sci U S A. 2014;111(23):E2384-E2393. https://doi.org/10.1073/PNAS.1400057111.

  194. Sharpe RM, McKinnell C, Kivlin C, et al. Proliferation and functional maturation of Sertoli cells, and their relevance to disorders of testis function in adulthood. Reproduction. 2003;125(6):769–84.

    CAS  PubMed  Google Scholar 

  195. Crépieux P, Marion S, Martinat N, et al. The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene. 2001;20:4696–709.

    PubMed  Google Scholar 

  196. Meachem SJ, Ruwanpura SM, Ziolkowski J, et al. Developmentally distinct in vivo effects of FSH on proliferation and apoptosis during testis maturation. J Endocrinol. 2005;186:429–46.

    CAS  PubMed  Google Scholar 

  197. Orth JM, Gunsalus GL, Lamperti AA. Evidence from Sertoli cell-depleted rats indicates that spermatid number in adults depends on numbers of Sertoli cells produced during perinatal development. Endocrinology. 1988;122:787–94.

    CAS  PubMed  Google Scholar 

  198. Orth JM. The role of follicle-stimulating hormone in controlling sertoli cell proliferation in testes of fetal rats. Endocrinology. 1984;115:1248–55.

    CAS  PubMed  Google Scholar 

  199. Bhattacharya I, Pradhan BS, Sarda K, et al. A switch in Sertoli cell responsiveness to FSH may be responsible for robust onset of germ cell differentiation during prepubartal testicular maturation in rats. Am J Physiol-Endocrinol Metab. 2012;303(7):E886-E898. https://doi.org/10.1152/ajpendo.00293.2012.

  200. Majumdar SS, Sarda K, Bhattacharya I, et al. Insufficient androgen and FSH signaling may be responsible for the azoospermia of the infantile primate testes despite exposure to an adult-like hormonal milieu. Human Reprod. 2012;27(8):2515–25.

    CAS  Google Scholar 

  201. Devi YS, Sarda K, Stephen B, et al. Follicle-stimulating hormone-independent functions of primate sertoli cells: potential implications in the diagnosis and management of male infertility. J Clin Endocrinol Metab. 2006;91:1062–8.

    CAS  PubMed  Google Scholar 

  202. Bhattacharya I, Basu S, Sarda K, et al. Low levels of gαs and Ric8b in testicular Sertoli cells may underlie restricted FSH action during infancy in primates. Endocrinology. 2015;156:1143–55.

    CAS  PubMed  Google Scholar 

  203. Walker WH, Cheng J. FSH and testosterone signaling in Sertoli cells. Reproduction. 2005;130:15–28.

    CAS  PubMed  Google Scholar 

  204. Bhattacharya I, Basu S, Pradhan BS, et al. Testosterone augments FSH signaling by upregulating the expression and activity of FSH-receptor in pubertal primate Sertoli cells. Mol Cell Endocrinol. 2019;482:70–80.

    CAS  PubMed  Google Scholar 

  205. Dessauer CW, Scully TT, Gilman AG. Interactions of forskolin and ATP with the cytosolic domains of mammalian adenylyl cyclase. J Biol Chem. 1997;272(35):22272-7. Downloaded from, http://www.jbc.org/

  206. Shupe J, Cheng J, Puri P, et al. Regulation of Sertoli-germ cell adhesion and sperm release by FSH and nonclassical testosterone signaling. Molecular Endocrinology. 2011;25(2):238-252. https://doi.org/10.1210/me.2010-0030.

  207. Cooke PS, Walker WH. Male fertility in mice requires classical and nonclassical androgen signaling. Cell Rep. 2021;36:109557.

    CAS  PubMed  Google Scholar 

  208. Ruwanpura SM, McLachlan RI, Meachem SJ. Hormonal regulation of male germ cell development. J Endocrinol. 2010;205:117–31.

    CAS  PubMed  Google Scholar 

  209. Bhattacharya I, Dey S, Banerjee A. Revisiting the gonadotropic regulation of mammalian spermatogenesis: evolving lessons during the past decade. Front Endocrinol (Lausanne). 2023;14:1110572.

    PubMed  Google Scholar 

  210. Bhattacharya I, Sen Sharma S, Majumdar SS. Pubertal orchestration of hormones and testis in primates. Mol Reprod Dev. 2019;86:1505–30.

    CAS  PubMed  Google Scholar 

  211. Jung JH, Seo JT. Empirical medical therapy in idiopathic male infertility: promise or panacea? Clin Exp Reprod Med. 2014;41:108–14.

    PubMed  PubMed Central  Google Scholar 

  212. Bracke A, Peeters K, Punjabi U, et al. A search for molecular mechanisms underlying male idiopathic infertility. Reprod Biomed Online. 2018;36:327–39.

    CAS  PubMed  Google Scholar 

  213. Schaison G, Young J, Pholsena M, et al. Failure of combined follicle-stimulating hormone-testosterone administration to initiate and/or maintain spermatogenesis in men with hypogonadotropic hypogonadism. J Clin Endocrinol Metab. 1993;77(6):1545–9.

    CAS  PubMed  Google Scholar 

  214. Ma M, Yang S, Zhang Z, et al. Sertoli cells from non-obstructive azoospermia and obstructive azoospermia patients show distinct morphology, Raman spectrum and biochemical phenotype. Hum Reprod. 2013;28:1863–73.

    CAS  PubMed  Google Scholar 

  215. Plotton I, Sanchez P, Durand P, et al. Decrease of both stem cell factor and clusterin mRNA levels in testicular biopsies of azoospermic patients with constitutive or idiopathic but not acquired spermatogenic failure. Hum Reprod. 2006;21:2340–5.

    CAS  PubMed  Google Scholar 

  216. Steger K, Rey R, Kliesch S, et al. Immunohistochemical detection of immature Sertoli cell markers in testicular tissue of infertile adult men: a preliminary study. Int J Androl. 1996;19:122–8.

    CAS  PubMed  Google Scholar 

  217. Paduch DA, Hilz S, Grimson A, et al. Aberrant gene expression by Sertoli cells in infertile men with Sertoli cell-only syndrome. PLoS ONE. 2019;14:1–27.

    Google Scholar 

  218. Punjani N, Lamb DJ. Canary in the coal mine? Male Infertility Marker Overall Health. 2020;54:465–86. https://doi.org/10.1146/annurev-genet-022020-023434.

    Article  CAS  Google Scholar 

  219. Heinrich A, Bhandary B, Potter SJ, et al. Cdc42 activity in Sertoli cells is essential for maintenance of spermatogenesis. Cell Rep. 2021;37(4):109885. https://doi.org/10.1016/J.CELREP.2021.109885.

  220. Heinrich A, Potter SJ, Guo L, et al. Distinct roles for Rac1 in Sertoli cell function during testicular development and spermatogenesis. Cell Rep. 2020;31(2):107513. https://doi.org/10.1016/J.CELREP.2020.03.077.

  221. Majumdar SS, Bhattacharya I. Genomic and post-genomic leads toward regulation of spermatogenesis. Prog Biophys Mol Biol. 2013;113:409–22.

    CAS  PubMed  Google Scholar 

  222. Zimmermann C, Stévant I, Borel C, et al. Research resource: the dynamic transcriptional profile of Sertoli cells during the progression of spermatogenesis. Mol Endocrinol. 2015;29(4):627–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  223. Gautam M, Bhattacharya I, Rai U, et al. Hormone induced differential transcriptome analysis of Sertoli cells during postnatal maturation of rat testes. PLoS One. 2018;13(1).

  224. Basu S, Arya SP, Usmani A, et al. Defective Wnt3 expression by testicular Sertoli cells compromise male fertility. Cell Tissue Res. 2018;371:351–63.

    CAS  PubMed  Google Scholar 

  225. Majumdar SS, Usmani A, Bhattacharya I, et al. A method for rapid generation of transgenic animals to evaluate testis genes during sexual maturation. J Reprod Immunol. 2009;83:36–9.

    CAS  PubMed  Google Scholar 

  226. Das DS, Wadhwa N, Kunj N, et al. Dickkopf homolog 3 (DKK3) plays a crucial role upstream of WNT/β-CATENIN signaling for Sertoli cell mediated regulation of spermatogenesis. PLoS ONE. 2013;8(5):e63603. https://doi.org/10.1371/journal.pone.0063603.

  227. Shukla M, Ganguli N, Sen Sharma S, et al. Sertoli cell specific decline in NOR-1 leads to germ cell apoptosis and reduced fertility. J Cell Biochem. 2018;119:6514–26.

    CAS  PubMed  Google Scholar 

  228. Mandal K, Bader SL, Kumar P, et al. An integrated transcriptomics-guided genome-wide promoter analysis and next-generation proteomics approach to mine factor(s) regulating cellular differentiation. DNA Res. 2017;24:143–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  229. Sarkar RK, Sen Sharma S, Mandal K, et al. Homeobox transcription factor Meis1 is crucial to Sertoli cell mediated regulation of male fertility. Andrology. 2021;9:689–99.

    CAS  PubMed  Google Scholar 

  230. Pradhan BS, Bhattacharya I, Sarkar R, et al. Downregulation of Sostdc1 in testicular Sertoli cells is prerequisite for onset of robust spermatogenesis at puberty. Sci Rep. 2019;9:1–11.

    Google Scholar 

  231. Pradhan BS, Bhattacharya I, Sarkar R, et al. Pubertal down-regulation of Tetraspanin 8 in testicular Sertoli cells is crucial for male fertility. Mol Hum Reprod. 2020;26:760–72.

    CAS  PubMed  Google Scholar 

  232. Gupta A, Mandal K, Singh P, et al. Declining levels of miR-382-3p at puberty trigger the onset of spermatogenesis. Mol Ther - Nucleic Acids. 2021;26:192–207.

    CAS  PubMed  PubMed Central  Google Scholar 

  233. Gupta A, Vats A, Ghosal A, et al. Follicle-stimulating hormone-mediated decline in miR-92a-3p expression in pubertal mice Sertoli cells is crucial for germ cell differentiation and fertility. Cell Mol Life Sci. 2022;79(3):1–21.

    Google Scholar 

  234. Barratt CLR, Björndahl L, De Jonge CJ, et al. The diagnosis of male infertility : an analysis of the evidence to support the development of global WHO guidance — challenges and future research opportunities. Hum Reprod Update. 2017;23(6):660–80.

    PubMed  PubMed Central  Google Scholar 

  235. Bardsley MZ, Kowal K, Levy C, et al. 47,XYY syndrome: clinical phenotype and timing of ascertainment. J Pediatr. 2013;163(4):1085–94. https://doi.org/10.1016/j.jpeds.2013.05.037.

    Article  PubMed  Google Scholar 

  236. Kim IW, Khadilkar AC, Ko EY, Sabanegh ES Jr. 47,XYY syndrome and male infertility. Rev Urol. 2013;15(4):188–96.

    PubMed  PubMed Central  Google Scholar 

  237. Re L, Birkhoff JM. The 47,XYY syndrome, 50 years of certainties and doubts: A systematic review. Aggress Violent Behav. 2015;22:9–17.

    Google Scholar 

  238. Mennie N, King SK, Marulaiah M, et al. Leydig cell hyperplasia in children: Case series and review. J Pediatr Urol. 2017;13(2):158–63.

    PubMed  Google Scholar 

  239. Kyrönlahti A, Vetter M, Euler R, et al. GATA4 deficiency impairs ovarian function in adult mice. Biol Reprod. 2011;84(5):1033–44. https://doi.org/10.1095/biolreprod.110.086850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  240. Bagheri-Fam S, Combes AN, Ling CK, Wilhelm D. Heterozygous deletion of Sox9 in mouse mimics the gonadal sex reversal phenotype associated with campomelic dysplasia in humans. Hum Mol Genet. 20202;29(23):3781–3792. https://doi.org/10.1093/hmg/ddaa259.

  241. De Gendt K, Swinnen JV, Saunders PTK, et al. A Sertoli cell-selective knockout of the androgen receptor causes spermatogenic arrest in meiosis. Proc Natl Acad Sci. 2004;101(5):1327–32. https://doi.org/10.1073/pnas.0308114100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Sato T, Yokonishi T, Komeya M, et al. Testis tissue explantation cures spermatogenic failure in c-Kit ligand mutant mice. Proc Natl Acad Sci USA. 2012;109(42):16934–8. https://doi.org/10.1073/pnas.1211845109.

    Article  PubMed  PubMed Central  Google Scholar 

  243. Meng X, Lindahl M, Hyvönen ME, et al. Regulation of cell fate decision of undifferentiated spermatogonia by GDNF. Science. 2000;287(5457):1489–1493. https://doi.org/10.1126/science.287.5457.1489.

  244. Brehm R, Zeiler M, Rüttinger C, et al. A Sertoli cell-specific knockout of connexin43 prevents initiation of spermatogenesis. Am J of Pathol. 2007;171(1):19–31. https://doi.org/10.2353/ajpath.2007.061171.

    Article  CAS  Google Scholar 

  245. Mazaud-Guittot S, Meugnier E, Pesenti S, et al. Claudin 11 deficiency in mice results in loss of the Sertoli cell epithelial phenotype in the testis. Biol Reprod. 2010;82(1):202–13. https://doi.org/10.1095/biolreprod.109.078907.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

SSM acknowledges funding from the JC Bose Fellowship (SERB-JCB/2017/000027) and DBT-NIAB. IB acknowledges financial support from the Central University of Kerala, Kasaragod, Kerala.

Author information

Authors and Affiliations

Authors

Contributions

IB, SSS, and SSM conceived the concept. IB wrote the first draft. SSS prepared all the figures/tables with support from IB. IB, SSS, and SSM edited the manuscript to produce the final draft.

Corresponding authors

Correspondence to Indrashis Bhattacharya or Subeer S. Majumdar.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

IB and SSS contributed equally to this work.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, I., Sharma, S.S. & Majumdar, S.S. Etiology of Male Infertility: an Update. Reprod. Sci. 31, 942–965 (2024). https://doi.org/10.1007/s43032-023-01401-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01401-x

Keywords

Navigation