Skip to main content

Advertisement

Log in

Are Vascular Endothelium and Angiogenesis Effective MicroRNA Biomarkers Associated with the Prediction of Early-Onset Preeclampsia (EOPE) and Adverse Perinatal Outcomes?

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

MicroRNA is associated with angiogenesis, invasion, proliferation, and vascular endothelial remodeling of various diseases. We aimed to investigate serum MicroRNA (miRNA) levels in preeclampsia (PE) and to determine whether any changes in miRNA levels are useful in predicting early onset preeclampsia (EOPE) and adverse perinatal outcomes. A total of 89 pregnant patients were enrolled in this prospective case–control study (55 PE and 34 healthy controls). miR-17, miR-20a, miR-20b, miR126, miR155, miR-200, miR-222, and miR-210 levels were studied in maternal serum in preeclamptic pregnant women. Multiple logistic regression analyses analyzed the risk factors which are associated with EOPE and adverse maternal outcomes. The Real-time RT-PCR method was used to determine maternal serum miRNA levels. Serum miR-17, miR-20a, miR-20b, miR126, and miR-210 levels were significantly higher in PE than the control group (p < .001, p < .001, p < .001, p < .001 and p = .047 respectively). Increased miR-17, miR-20a, and miR-20b levels were independently associated with PE (OR: 0.642, 95%Cl: 0.486–0.846, p = .002; OR: 0.899, 95%Cl: 0.811–0.996, p = .042 and OR: 0.817, 95%Cl: 0.689–0.970, p = .021). Increased miR-17 and miR-126 levels were negatively correlated with serum EOPE in PE (r = -.313, p = .020), and increased miR-210 levels were significantly positively correlated with EOPE in PE (r = .285, p = .005). Increased expression of serum miR-17, miR-20a, miR-20b, miR126, and miR-210 were found to be associated with PE, also increased expression of miR-17, miR-20a, and miR-20b were to be predicted with PE, also increased maternal serum miR-17 and miR-126 expressions were negatively correlated and increased miR-210 expression was positively correlated with EOPE in PE women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

Data transparency.

Code Availability

Not applicable.

References

  1. Ventura W, Koide K, Hori K, et al. Placental expression of microRNA-17 and -19b is down-regulated in early pregnancy loss. Eur J Obstet Gynecol Reprod Biol. 2013;169(1):28–32.

    Article  CAS  PubMed  Google Scholar 

  2. Flor I, Neumann A, Freter C, et al. Abundant expression and hemimethylation of C19MC in cell cultures from placenta-derived stromal cells. Biochem Biophys Res Commun. 2012;422(3):411–6.

    Article  CAS  PubMed  Google Scholar 

  3. Gao Y, She R, Wang Q, et al. Up-regulation of miR- 299 suppressed the invasion and migration of HTR-8/SVneo trophoblast cells partly via targeting HDAC2 in pre-eclampsia. Biomed Pharmacother. 2018;97:1222–8.

    Article  CAS  PubMed  Google Scholar 

  4. Bartel DP. Metazoan microRNAs. Cell. 2018;173(1):20–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Belgardt BF, Ahmed K, Spranger M, et al. The microRNA-200 family regulates pancreatic beta cell survival in type 2 diabetes. Nat Med. 2015;21(6):619–27.

    Article  CAS  PubMed  Google Scholar 

  6. Qu Y, Zhang H, Sun W, et al. MicroRNA-155 promotes gastric cancer growth and invasion by negatively regulating transforming growth factor-β receptor 2. Cancer Sci. 2018;109(3):618–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Pung KJ, Halberg N, Yoshida M, et al. A microRNA regulon that mediates endothelial recruitment and metastasis by cancer cells. Nature. 2012;481(190):194.

    ADS  Google Scholar 

  8. Wang W, Qu A, Liu W, et al. Circulating miR-210 as a diagnostic and prognostic biomarker for colorectal cancer. Eur J Cancer Care. 2017;26:e12448.

    Article  Google Scholar 

  9. Zhou C, Zou Q, Li H, et al. Preeclampsia downregulates microRNAs in fetal endothelial cells: Roles of miR-29a/c-3p in endothelial function. J Clin Endocrinol Metab. 2017;102(9):3470–9.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Olson EN. AngiomiRs— key regulators of angiogenesis. Curr Opin Genet Dev. 2017;19(205–211):15.

    CAS  Google Scholar 

  11. Wu F, Yang Z, Li G. Role of specific microRNAs for endothelial function and angiogenesis. Biochem Biophys Res Commun. 2009;386(4):549–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Wang W, Feng L, Zhang H, et al. Preeclampsia up‐regulates angiogenesis‐associated microRNA (i.e., miR‐17, −20a, and −20b) that target ephrin‐B2 and EPHB4 in the human placenta. J Clin Endocrinol Metab. 2012;97(6):E1051–9.

  13. Wang Y, Zhang Y, Wang H, et al. Aberrantly up-regulated miR-20a in pre-eclampsic placenta compromised the proliferative and invasive behaviors of trophoblast cells by targeting forkhead box protein A1. Int J Biol Sci. 2014;10(9):973–82.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Liu B, Liu L, Cui S, et al. Expression and significance of microRNA-126 and VCAM-1 in placental tissues of women with early-onset preeclampsia. J Obstet Gynaecol Res. 2012;47(6):2042–50.

    Article  Google Scholar 

  15. Luo R, Shao X, Xu P, et al. MicroRNA-210 contributes to preeclampsia by downregulating potassium channel modulatory factor 1. Hypertension. 2014;64(4):839–45.

    Article  CAS  PubMed  Google Scholar 

  16. Sibai B, Dekker G, Küfemin M. Pre-eclampsia. Lancet. 2005;365(9461):785–99.

    Article  PubMed  Google Scholar 

  17. Tranquilli AL, Brown MA, Zeeman GG, et al. The definition of severe and early-onset preeclampsia. Statements from the International Society for the Study of Hypertension in Pregnancy (ISSHP). Pregnancy Hypertens. 2013;3(1):44–7.

  18. Maynard SE, Min JY, Merchan J, et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J Clin Invest. 2003;111(5):649–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lycoudi A, Mavreli D, Mavrou A, et al. miRNAs in pregnancy-related complications. Expert Rev Mol Diagn. 2015;15:999–1010.

    Article  CAS  PubMed  Google Scholar 

  20. Hua Z, Lv Q, Ye W, et al. MiRNA-directed regulation of VEGF and other angiogenic factors under hypoxia. PLoS One. 2006;1(1):e116. https://doi.org/10.1371/journal.pone.0000116.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet. 2006;38(9):1060–5. https://doi.org/10.1038/ng1855.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Martin MM, Buckenberger JA, Jiang J, et al. The human angiotensin II type 1 receptor +1166 A/C polymorphism attenuates microRNA-155 binding. J Biol Chem. 2007;288(6):4227. https://doi.org/10.1074/jbc.A112.701050.

    Article  CAS  Google Scholar 

  23. Fasanaro P, D’Alessandra Y, Di Stefano V, et al. MicroRNA-210 modulates endothelial cell response to hypoxia and inhibits the receptor tyrosine-kinase ligand Ephrin-A3. J Biol Chem. 2008;83(23):15878–83.

    Article  Google Scholar 

  24. Harris TA, Yamakuchi M, Ferlito M, et al. MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1. Proc Natl Acad Sci U S A. 2008;105(5):1516–21. https://doi.org/10.1073/pnas.0707493105.

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  25. Tili E, Michaille JJ, Cimino A, et al. Modulation of miR-155 and miR-125b levels following lipopolysaccharide/TNF-alpha stimulation and their possible roles in regulating the response to endotoxin shock. J Immunol. 2007;179(8):5082–9. https://doi.org/10.4049/jimmunol.179.8.5082.

    Article  CAS  PubMed  Google Scholar 

  26. O’Connell RM, Rao DS, Chaudhuri AA, et al. Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med. 2008;205(3):585–94. https://doi.org/10.1084/jem.20072108.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mistry HD, Gill CA, Kurlak LO, et al. Association between maternal micronutrient status, oxidative stress, and common genetic variants in antioxidant enzymes at 15 weeks gestation in nulliparous women who subsequently develop preeclampsia. Free Radic Biol Med. 2015;78:147–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ali SM, Khalil RA. Genetic, immune, and vasoactive factors in the vascular dysfunction associated with hypertension in pregnancy. Expert Opin Ther Targets. 2015;19(11):1495–515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdelazim SA, Shaker OG, Aly YAH, Senousy M. Uncovering serum placental-related non-coding RNAs as possible biomarkers of preeclampsia risk, onset, and severity revealed MALAT-1, miR-363 and miR-17. Sci Rep. 2022;12(1):1249.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  30. Kumar P, Luo Y, Tudela C, et al. The c-Myc-regulated microRNA-17~92 (miR-17~92) and miR-106a~363 clusters target hCYP19A1 and hGCM1 to inhibit human trophoblast differentiation. Mol Cell Biol. 2013;33(9):1782–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Chen DB, Wang W. Human placental microRNAs, and preeclampsia. Biol Reprod. 2013;88(5):130.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Frazier S, McBride MW, Mulvana H, et al. From animal models to patients: the role of placental microRNAs, miR-210, miR-126, and miR-148a/152 in preeclampsia. Clin Sci (Lond). 2020;134(8):1001–25.

    Article  CAS  PubMed  Google Scholar 

  33. Hu TX, Wang G, Guo XJ, et al. MiR 20a,-20b, and -200c are involved in hydrogen sulfide stimulation of VEGF production in human placental trophoblasts. Placenta. 2016;39:101–10.

    Article  PubMed  Google Scholar 

  34. Hromadnikova I, Kotlabova K, Hympanova L, et al. Gestational hypertension, preeclampsia, and intrauterine growth restriction induce dysregulation of cardiovascular and cerebrovascular disease-associated microRNAs in maternal whole peripheral blood. Thromb Res. 2016;137:126–40.

    Article  CAS  PubMed  Google Scholar 

  35. Hromadnikova I, Kotlabova K, Dvorakova L, et al. Postpartum profiling of microRNAs involved in the pathogenesis of cardiovascular/cerebrovascular diseases in women exposed to pregnancy-related complications. Int J Cardiol. 2019;291:158–67.

    Article  PubMed  Google Scholar 

  36. Hromadnikova I, Kotlabova K, Krofta L. Cardiovascular Disease-Associated MicroRNAs as Novel Biomarkers of First-Trimester Screening for Gestational Diabetes Mellitus in the Absence of Other Pregnancy-Related Complications. Int J Mol Sci. 2022;23(18):10635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Hromadnikova I, Kotlabova K, Krofta L. First-Trimester Screening for Fetal Growth Restriction and Small-for-Gestational-Age Pregnancies without Preeclampsia Using Cardiovascular Disease-Associated MicroRNA Biomarkers. Biomedicines. 2022;10(3):718.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hromadnikova I, Kotlabova K, Hympanova L, et al. Cardiovascular and Cerebrovascular Disease Associated microRNAs Are Dysregulated in Placental Tissues Affected with Gestational Hypertension, Preeclampsia, and Intrauterine Growth Restriction. PLoS One. 2015;9:e0138383.

    Article  Google Scholar 

  39. Staszel T, Zapała B, Polus A, et al. Role of microRNAs in endothelial cell pathophysiology. Pol Arch Med Wewn. 2011;121(10):361–6.

  40. Howe CG, Foley HB, Kennedy EM, et al. Extracellular vesicle microRNA in early versus late pregnancy with birth outcomes in the MADRES study. Epigenetics. 2022;17(3):269–85.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Selcuk University in Turkey for funding under the network scheme of the Project. (Ref no.2020/94).

Funding

This study was financially supported by Selcuk University.

Author information

Authors and Affiliations

Authors

Contributions

SO and AK conceived the idea; SO, MM, and MNA collected the data; EMO provided intellectual inputs; SO, AK, EMO, MM, and CC wrote.

Corresponding author

Correspondence to Sibel Ozler.

Ethics declarations

Ethics Approval

The study was approved by the Clinical Research Ethics Committee of Selcuk University in Turkey (approval date/ number: 19.02.2020/04).

Consent to participate and publication

Informed consent was obtained from all patients for being included in the study.

Conflicts of Interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozler, S., Kebapcilar, A., Ozdemir, E.M. et al. Are Vascular Endothelium and Angiogenesis Effective MicroRNA Biomarkers Associated with the Prediction of Early-Onset Preeclampsia (EOPE) and Adverse Perinatal Outcomes?. Reprod. Sci. 31, 803–810 (2024). https://doi.org/10.1007/s43032-023-01367-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01367-w

Keywords

Navigation