Skip to main content

Advertisement

Log in

Association of Placental Tissue Metabolite Levels with Gestational Diabetes Mellitus: a Metabolomics Study

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The purpose of the study is to investigate the metabolic characteristics of placental tissue in patients diagnosed with gestational diabetes mellitus (GDM). Ultra-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) was employed to qualitatively and quantitatively analyze the metabolites in placental tissues obtained from 25 healthy pregnant women and 25 pregnant women diagnosed with GDM. Multilevel statistical methods are applied to process intricate metabolomics data. Meanwhile, we applied machine learning techniques to identify biomarkers that could potentially predict the risk of long-term complications in patients with GDM as well as their offspring. We identified 1902 annotated metabolites, out of which 212 metabolites exhibited significant differences in GDM placentas. In addition, the study identifies a set of risk biomarkers that effectively predict the likelihood of long-term complications in both pregnant women with GDM and their offspring. The accuracy of this panel was measured by the area under the receiver operating characteristic curve (ROC), which was found to be 0.992 and 0.960 in the training and validation sets, respectively. This study enhances our understanding of GDM pathogenesis through metabolomics. Furthermore, the panel of risk markers identified could prove to be a valuable tool in predicting potential long-term complications for both GDM patients and their offspring.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Additional data to that included in the manuscript can be provided upon request.

References

  1. Casey BM, Lucas MJ, McIntire DD, Leveno KJ. Pregnancy outcomes in women with gestational diabetes compared with the general obstetric population. Obstet Gynecol. 1997;90(6):869–73. https://doi.org/10.1016/s0029-7844(97)00542-5.

    Article  CAS  PubMed  Google Scholar 

  2. Pettitt DJ, Knowler WC, Baird HR, Bennett PH. Gestational diabetes: infant and maternal complications of pregnancy in relation to third-trimester glucose tolerance in the Pima Indians. Diabetes Care. 1980;3(3):458–64. https://doi.org/10.2337/diacare.3.3.458.

    Article  CAS  PubMed  Google Scholar 

  3. Jensen DM, Damm P, Sørensen B, Mølsted-Pedersen L, Westergaard JG, Korsholm L, et al. Proposed diagnostic thresholds for gestational diabetes mellitus according to a 75-g oral glucose tolerance test. Maternal and perinatal outcomes in 3260 Danish women. Diabet Med. 2003;20(1):51–7. https://doi.org/10.1046/j.1464-5491.2003.00857.x.

    Article  CAS  PubMed  Google Scholar 

  4. Ye W, Luo C, Huang J, Li C, Liu Z, Liu F. Gestational diabetes mellitus and adverse pregnancy outcomes: systematic review and meta-analysis. Bmj. 2022;377:e067946. https://doi.org/10.1136/bmj-2021-067946.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Daly B, Toulis KA, Thomas N, Gokhale K, Martin J, Webber J, et al. Increased risk of ischemic heart disease, hypertension, and type 2 diabetes in women with previous gestational diabetes mellitus, a target group in general practice for preventive interventions: a population-based cohort study. Plos Med. 2018;15(1):e1002488. https://doi.org/10.1371/journal.pmed.1002488.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, et al. Overweight and the metabolic syndrome in adult offspring of women with diet-treated gestational diabetes mellitus or type 1 diabetes. J Clin Endocrinol Metab. 2009;94(7):2464–70. https://doi.org/10.1210/jc.2009-0305.

    Article  CAS  PubMed  Google Scholar 

  7. Clausen TD, Mathiesen ER, Hansen T, Pedersen O, Jensen DM, Lauenborg J, et al. High prevalence of type 2 diabetes and pre-diabetes in adult offspring of women with gestational diabetes mellitus or type 1 diabetes: the role of intrauterine hyperglycemia. Diabetes Care. 2008;31(2):340–6. https://doi.org/10.2337/dc07-1596.

    Article  PubMed  Google Scholar 

  8. Baeyens L, Hindi S, Sorenson RL, German MS. β-Cell adaptation in pregnancy. Diabetes Obes Metab. 2016;18(Suppl 1):63–70. https://doi.org/10.1111/dom.12716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Barbour LA, McCurdy CE, Hernandez TL, Kirwan JP, Catalano PM, Friedman JE. Cellular mechanisms for insulin resistance in normal pregnancy and gestational diabetes. Diabetes Care. 2007;30(Suppl 2):S112–9. https://doi.org/10.2337/dc07-s202.

    Article  CAS  PubMed  Google Scholar 

  10. She P, Van Horn C, Reid T, Hutson SM, Cooney RN, Lynch CJ. Obesity-related elevations in plasma leucine are associated with alterations in enzymes involved in branched-chain amino acid metabolism. Am J Physiol Endocrinol Metab. 2007;293(6):E1552–63. https://doi.org/10.1152/ajpendo.00134.2007.

    Article  CAS  PubMed  Google Scholar 

  11. Pappa KI, Vlachos G, Theodora M, Roubelaki M, Angelidou K, Antsaklis A. Intermediate metabolism in association with the amino acid profile during the third trimester of normal pregnancy and diet-controlled gestational diabetes. Am J Obstet Gynecol. 2007;196(1):65.e1-5. https://doi.org/10.1016/j.ajog.2006.06.094.

    Article  CAS  PubMed  Google Scholar 

  12. Gao J, Xu B, Zhang X, Cui Y, Deng L, Shi Z, et al. Association between serum bile acid profiles and gestational diabetes mellitus: a targeted metabolomics study. Clin Chim Acta. 2016;459:63–72. https://doi.org/10.1016/j.cca.2016.05.026.

    Article  CAS  PubMed  Google Scholar 

  13. Enquobahrie DA, Denis M, Tadesse MG, Gelaye B, Ressom HW, Williams MA. Maternal early pregnancy serum metabolites and risk of gestational diabetes mellitus. J Clin Endocrinol Metab. 2015;100(11):4348–56. https://doi.org/10.1210/jc.2015-2862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jiang R, Wu S, Fang C, Wang C, Yang Y, Liu C, et al. Amino acids levels in early pregnancy predict subsequent gestational diabetes. J Diabetes. 2020;12(7):503–11. https://doi.org/10.1111/1753-0407.13018.

    Article  CAS  PubMed  Google Scholar 

  15. Koos BJ, Gornbein JA. Early pregnancy metabolites predict gestational diabetes mellitus: implications for fetal programming. Am J Obstet Gynecol. 2021;224(2):215.e1 e7. https://doi.org/10.1016/j.ajog.2020.07.050.

    Article  Google Scholar 

  16. López-Hernández Y, Herrera-Van Oostdam AS, Toro-Ortiz JC, López JA, Salgado-Bustamante M, Murgu M, et al. Urinary metabolites altered during the third trimester in pregnancies complicated by gestational diabetes mellitus: relationship with potential upcoming metabolic disorders. Int J Mol Sci. 2019;20(5). https://doi.org/10.3390/ijms20051186.

  17. Dudzik D, Zorawski M, Skotnicki M, Zarzycki W, García A, Angulo S, et al. GC-MS based gestational diabetes mellitus longitudinal study: identification of 2-and 3-hydroxybutyrate as potential prognostic biomarkers. J Pharm Biomed Anal. 2017;144:90–8. https://doi.org/10.1016/j.jpba.2017.02.056.

    Article  CAS  PubMed  Google Scholar 

  18. Chen S, Kong H, Lu X, Li Y, Yin P, Zeng Z, et al. Pseudotargeted metabolomics method and its application in serum biomarker discovery for hepatocellular carcinoma based on ultra high-performance liquid chromatography/triple quadrupole mass spectrometry. Anal Chem. 2013;85(17):8326–33. https://doi.org/10.1021/ac4016787.

    Article  CAS  PubMed  Google Scholar 

  19. Li Y, Ruan Q, Li Y, Ye G, Lu X, Lin X, et al. A novel approach to transforming a non-targeted metabolic profiling method to a pseudo-targeted method using the retention time locking gas chromatography/mass spectrometry-selected ions monitoring. J Chromatogr A. 2012;1255:228–36. https://doi.org/10.1016/j.chroma.2012.01.076.

    Article  CAS  PubMed  Google Scholar 

  20. Thévenot EA, Roux A, Xu Y, Ezan E, Junot C. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses. J Proteome Res. 2015;14(8):3322–35. https://doi.org/10.1021/acs.jproteome.5b00354.

    Article  CAS  PubMed  Google Scholar 

  21. Xu RH, Wei W, Krawczyk M, Wang W, Luo H, Flagg K, et al. Circulating tumour DNA methylation markers for diagnosis and prognosis of hepatocellular carcinoma. Nat Mater. 2017;16(11):1155–61. https://doi.org/10.1038/nmat4997.

    Article  CAS  PubMed  Google Scholar 

  22. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez JC, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77. https://doi.org/10.1186/1471-2105-12-77.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Li G, Gao W, Xu Y, Xie M, Tang S, Yin P, et al. Serum metabonomics study of pregnant women with gestational diabetes mellitus based on LC-MS. Saudi J Biol Sci. 2019;26(8):2057–63. https://doi.org/10.1016/j.sjbs.2019.09.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bicocca MJ, Qureshey EJ, Chauhan SP, Hernandez-Andrade E, Sibai BM, Nowlen C, et al. Semiquantitative assessment of amniotic fluid among individuals with and without diabetes mellitus. J Ultrasound Med. 2022;41(2):447–55. https://doi.org/10.1002/jum.15725.

    Article  PubMed  Google Scholar 

  25. Szmuilowicz ED, Josefson JL, Metzger BE. Gestational diabetes mellitus. Endocrinol Metab Clin North Am. 2019;48(3):479–93. https://doi.org/10.1016/j.ecl.2019.05.001.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bellamy L, Casas JP, Hingorani AD, Williams D. Type 2 diabetes mellitus after gestational diabetes: a systematic review and meta-analysis. Lancet. 2009;373(9677):1773–9. https://doi.org/10.1016/s0140-6736(09)60731-5.

    Article  CAS  PubMed  Google Scholar 

  27. Beharier O, Shoham-Vardi I, Pariente G, Sergienko R, Kessous R, Baumfeld Y, et al. Gestational diabetes mellitus is a significant risk factor for long-term maternal renal disease. J Clin Endocrinol Metab. 2015;100(4):1412–6. https://doi.org/10.1210/jc.2014-4474.

    Article  CAS  PubMed  Google Scholar 

  28. Retnakaran R, Shah BR. Role of type 2 diabetes in determining retinal, renal, and cardiovascular outcomes in women with previous gestational diabetes mellitus. Diabetes Care. 2017;40(1):101–8. https://doi.org/10.2337/dc16-1400.

    Article  CAS  PubMed  Google Scholar 

  29. Grunnet LG, Hansen S, Hjort L, Madsen CM, Kampmann FB, Thuesen ACB, et al. Adiposity, dysmetabolic traits, and earlier onset of female puberty in adolescent offspring of women with gestational diabetes mellitus: a clinical study within the Danish National Birth Cohort. Diabetes Care. 2017;40(12):1746–55. https://doi.org/10.2337/dc17-0514.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou Y, Zhao R, Lyu Y, Shi H, Ye W, Tan Y, et al. Serum and amniotic fluid metabolic profile changes in response to gestational diabetes mellitus and the association with maternal-fetal outcomes. Nutrients. 2021;13(10). https://doi.org/10.3390/nu13103644.

  31. John CM, Ramasamy R, Al Naqeeb G, Al-Nuaimi AH, Adam A. Nicotinamide supplementation protects gestational diabetic rats by reducing oxidative stress and enhancing immune responses. Curr Med Chem. 2012;19(30):5181–6. https://doi.org/10.2174/092986712803530449.

    Article  CAS  PubMed  Google Scholar 

  32. Yang SJ, Choi JM, Kim L, Park SE, Rhee EJ, Lee WY, et al. Nicotinamide improves glucose metabolism and affects the hepatic NAD-sirtuin pathway in a rodent model of obesity and type 2 diabetes. J Nutr Biochem. 2014;25(1):66–72. https://doi.org/10.1016/j.jnutbio.2013.09.004.

    Article  CAS  PubMed  Google Scholar 

  33. Luo C, Yang C, Wang X, Chen Y, Liu X, Deng H. Nicotinamide reprograms adipose cellular metabolism and increases mitochondrial biogenesis to ameliorate obesity. J Nutr Biochem. 2022;107:109056. https://doi.org/10.1016/j.jnutbio.2022.109056.

    Article  CAS  PubMed  Google Scholar 

  34. Couturier A, Ringseis R, Most E, Eder K. Pharmacological doses of niacin stimulate the expression of genes involved in carnitine uptake and biosynthesis and improve the carnitine status of obese Zucker rats. BMC Pharmacol Toxicol. 2014;15:37. https://doi.org/10.1186/2050-6511-15-37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Liu T, Li J, Xu F, Wang M, Ding S, Xu H, et al. Comprehensive analysis of serum metabolites in gestational diabetes mellitus by UPLC/Q-TOF-MS. Anal Bioanal Chem. 2016;408(4):1125–35. https://doi.org/10.1007/s00216-015-9211-3.

    Article  CAS  PubMed  Google Scholar 

  36. Zhan Y, Wang J, He X, Huang M, Yang X, He L, et al. Plasma metabolites, especially lipid metabolites, are altered in pregnant women with gestational diabetes mellitus. Clin Chim Acta. 2021;517:139–48. https://doi.org/10.1016/j.cca.2021.02.023.

    Article  CAS  PubMed  Google Scholar 

  37. Bernhard W, Poets CF, Franz AR. Choline and choline-related nutrients in regular and preterm infant growth. Eur J Nutr. 2019;58(3):931–45. https://doi.org/10.1007/s00394-018-1834-7.

    Article  CAS  PubMed  Google Scholar 

  38. Huhtala MS, Tertti K, Pellonperä O, Rönnemaa T. Amino acid profile in women with gestational diabetes mellitus treated with metformin or insulin. Diabetes Res Clin Pract. 2018;146:8–17. https://doi.org/10.1016/j.diabres.2018.09.014.

    Article  CAS  PubMed  Google Scholar 

  39. Radosavac D, Graf P, Polidori MC, Sies H, Stahl W. Tocopherol metabolites 2, 5, 7, 8-tetramethyl-2-(2’-carboxyethyl)-6-hydroxychroman (alpha-CEHC) and 2, 7, 8-trimethyl-2-(2’-carboxyethyl)-6-hydroxychroman (gamma-CEHC) in human serum after a single dose of natural vitamin E. Eur J Nutr. 2002;41(3):119–24. https://doi.org/10.1007/s00394-002-0365-3.

    Article  CAS  PubMed  Google Scholar 

  40. Playdon MC, Ziegler RG, Sampson JN, Stolzenberg-Solomon R, Thompson HJ, Irwin ML, et al. Nutritional metabolomics and breast cancer risk in a prospective study. Am J Clin Nutr. 2017;106(2):637–49. https://doi.org/10.3945/ajcn.116.150912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Cho GJ, Hong SC, Oh MJ, Kim HJ. Vitamin D deficiency in gestational diabetes mellitus and the role of the placenta. Am J Obstet Gynecol. 2013;209(6):560.e1-8. https://doi.org/10.1016/j.ajog.2013.08.015.

    Article  CAS  PubMed  Google Scholar 

  42. Ashley B, Simner C, Manousopoulou A, Jenkinson C, Hey F, Frost JM, et al. Placental uptake and metabolism of 25(OH) vitamin D determine its activity within the fetoplacental unit. eLife. 2022;11. https://doi.org/10.7554/eLife.71094.

  43. Zhou J, Wu L. Modified highland barley regulates lipid metabolism and liver injury in high fat and cholesterol diet ICR mice. Foods. 2022;11(24). https://doi.org/10.3390/foods11244067.

  44. He Q, Tan X, Geng S, Du Q, Pei Z, Zhang Y, et al. Network analysis combined with pharmacological evaluation strategy to reveal the mechanism of Tibetan medicine Wuwei Shexiang pills in treating rheumatoid arthritis. Front Pharmacol. 2022;13:941013. https://doi.org/10.3389/fphar.2022.941013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Carmona GN, Schindler CW, Greig NH, Holloway HW, Jufer RA, Cone EJ, et al. Intravenous butyrylcholinesterase administration and plasma and brain levels of cocaine and metabolites in rats. Eur J Pharmacol. 2005;517(3):186–90. https://doi.org/10.1016/j.ejphar.2005.05.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr Yuting Xiang for his technical assistance. We would also like to thank all the staff at the Department of Obstetrics and Gynaecology, Huizhou First Maternal and Child Health Care Hospital, and we are grateful to Wuhan Metware Biotechnology Co., Ltd for assisting in metabolomics detection and bioinformatics analysis. Meanwhile, we would also like to thank all the staff of the Medical Ethics Committee of Huizhou First Maternal and Child Health Care Hospital for their support in overseeing this study. Finally, we thank all the tissue donors and their families who generously donated samples to the Clinical Biobanking Centre.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhongjun Li.

Ethics declarations

Ethics Approval

This study was conducted in accordance with the guidelines of the Declaration of Helsinki and was approved by the Hospital Ethics Committee of Huizhou First Maternal and Child Health Hospital (number: 2020055). Each participant signed an informed consent form in accordance with relevant regulations. This study followed the STROBE reporting guidelines.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1028 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Ye, X., Cao, D. et al. Association of Placental Tissue Metabolite Levels with Gestational Diabetes Mellitus: a Metabolomics Study. Reprod. Sci. 31, 569–578 (2024). https://doi.org/10.1007/s43032-023-01353-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01353-2

Keywords

Navigation