Skip to main content

Advertisement

Log in

Early Fetal Growth Restriction with or Without Hypertensive Disorders: a Clinical Overview

  • Pregnancy: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Early onset fetal growth restriction (FGR) is one of the main adverse pregnancy conditions, often associated with poor neonatal outcomes. Frequently, early onset FGR is associated with early onset hypertensive disorders of pregnancy (HDP), and in particular preeclampsia (PE). However, to date, it is still an open question whether pregnancies complicated by early FGR plus HDP (FGR-HDP) and those complicated by early onset FGR without HDP (normotensive-FGR (n-FGR)) show different prenatal and postnatal outcomes and, consequently, should benefit from different management and long-term follow-up. Recent data support the hypothesis that the presence of PE may have an additional impact on maternal hemodynamic impairment and placental lesions, increasing the risk of poor neonatal outcomes in pregnancy affected by early onset FGR-HDP compared to pregnancy affected by early onset n-FGR. This review aims to elucidate this poor studied topic, comparing the clinical characteristics, perinatal outcomes, and potential long-term sequelae of early onset FGR-HDP and early onset n-FGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the article.

References

  1. Resnik R. Intrauterine growth restriction. Obstet Gynecol. 2002;99(3):490–6.

    PubMed  Google Scholar 

  2. Lees CC, Stampalija T, Baschat AA, et al. ISUOG Practice guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312.

    Article  CAS  PubMed  Google Scholar 

  3. Mecacci F, Avagliano L, Lisi F, et al. Fetal growth restriction: does an integrated maternal hemodynamic-placental model fit better? Reprod Sci. 2021;28(9):2422–35.

    Article  CAS  PubMed  Google Scholar 

  4. Figueras F, Caradeux J, Crispi F, Eixarch E, Peguero A, Gratacos E. Diagnosis and surveillance of late-onset fetal growth restriction. Am J Obstet Gynecol. 2018;218(2):S790–802.

    Article  PubMed  Google Scholar 

  5. Ferrazzi E, Zullino S, Stampalija T, et al. Bedside diagnosis of two major clinical phenotypes of hypertensive disorders of pregnancy: clinical phenotypes of HDP. Ultrasound Obstet Gynecol. 2016;48(2):224–31.

    Article  CAS  PubMed  Google Scholar 

  6. Foo FL, Mahendru AA, Masini G, et al. Association between prepregnancy cardiovascular function and subsequent preeclampsia or fetal growth restriction. Hypertension. 2018;72(2):442–50.

    Article  CAS  PubMed  Google Scholar 

  7. Thilaganathan B. Placental syndromes: getting to the heart of the matter: perspective. Ultrasound Obstet Gynecol. 2017;49(1):7–9.

    Article  CAS  PubMed  Google Scholar 

  8. Di Martino DD, Stampalija T, Zullino S, et al. Maternal hemodynamic profile during pregnancy and in the post-partum in hypertensive disorders of pregnancy and fetal growth restriction. Am J Obstet Gynecol MFM. 2023;5(3):100841.

    Article  PubMed  Google Scholar 

  9. Ornaghi S, Caricati A, Di Martino DD, et al. Non-invasive maternal hemodynamic assessment to classify high-risk pregnancies complicated by fetal growth restriction. Front Clin Diabetes Healthc. 2022;3:851971.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kovo M, Schreiber L, Elyashiv O, Ben-Haroush A, Abraham G, Bar J. Pregnancy outcome and placental findings in pregnancies complicated by fetal growth restriction with and without preeclampsia. Reprod Sci. 2015;22(3):316–21.

    Article  PubMed  Google Scholar 

  11. Huppertz B. Placental pathology in pregnancy complications. Thromb Res. 2011;127:S96–9.

    Article  CAS  PubMed  Google Scholar 

  12. Redman CWG, Staff AC, Roberts JM. Syncytiotrophoblast stress in preeclampsia: the convergence point for multiple pathways. Am J Obstet Gynecol. 2022;226(2):S907–27.

    Article  CAS  PubMed  Google Scholar 

  13. Huppertz B. Trophoblast differentiation, fetal growth restriction and preeclampsia. Pregnancy Hypertens Int J Womens Cardiovasc Health. 2011;1(1):79–86.

    Google Scholar 

  14. Mayhew TM. A stereological perspective on placental morphology in normal and complicated pregnancies. J Anat. 2009;215(1):77–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Herraiz I, Quezada MS, Rodriguez-Calvo J, Gómez-Montes E, Villalaín C, Galindo A. Longitudinal change of sFlt-1/PlGF ratio in singleton pregnancy with early-onset fetal growth restriction. Ultrasound Obstet Gynecol. 2018;52(5):631–8.

    Article  CAS  PubMed  Google Scholar 

  16. Di Martino DD, Avagliano L, Ferrazzi E, et al. Hypertensive disorders of pregnancy and fetal growth restriction: clinical characteristics and placental lesions and possible preventive nutritional targets. Nutrients. 2022;14(16):3276.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Chen W, Wei Q, Liang Q, Song S, Li J. Diagnostic capacity of sFlt-1/PlGF ratio in fetal growth restriction: a systematic review and meta-analysis. Placenta. 2022;127:37–42.

    Article  CAS  PubMed  Google Scholar 

  18. Stepan H, Hund M, Andraczek T. Combining biomarkers to predict pregnancy complications and redefine preeclampsia: the angiogenic-placental syndrome. Hypertension. 2020;75(4):918–26.

    Article  CAS  PubMed  Google Scholar 

  19. Herraiz I, Llurba E, Verlohren S, Galindo A. on behalf of the Spanish Group for the study of angiogenic markers in preeclampsia. Update on the diagnosis and prognosis of preeclampsia with the aid of the sFlt-1/ PlGF ratio in singleton pregnancies. Fetal Diagn Ther. 2018;43(2):81–9.

    Article  PubMed  Google Scholar 

  20. Lim S, Li W, Kemper J, Nguyen A, Mol BW, Reddy M. Biomarkers and the prediction of adverse outcomes in preeclampsia: a systematic review and meta-analysis. Obstet Gynecol. 2021;137(1):72–81.

    Article  CAS  PubMed  Google Scholar 

  21. Veisani Y, Jenabi E, Delpisheh A, Khazaei S. Angiogenic factors and the risk of preeclampsia: a systematic review and meta-analysis. Int J Reprod Biomed. 2019;17(1):1.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Stepan H, Galindo A, Hund M, et al. Clinical utility of sFlt-1 and PlGF in screening, prediction, diagnosis and monitoring of pre-eclampsia and fetal growth restriction. Ultrasound Obstet Gynecol. 2022;61:168–80.

    Article  Google Scholar 

  23. Agrawal S, Shinar S, Cerdeira AS, Redman C, Vatish M. Predictive performance of PlGF (placental growth factor) for screening preeclampsia in asymptomatic women: a systematic review and meta-analysis. Hypertension. 2019;74(5):1124–35.

    Article  CAS  PubMed  Google Scholar 

  24. Agrawal S, Cerdeira AS, Redman C, Vatish M. Meta-analysis and systematic review to assess the role of soluble FMS-Like tyrosine kinase-1 and placenta growth factor ratio in prediction of preeclampsia: the SaPPPhirE study. Hypertension. 2018;71(2):306–16.

    Article  CAS  PubMed  Google Scholar 

  25. NICE National Istitute for Health and Care Excellence. PlGF-based testing to help diagnose suspected pre-eclampsia. In: Diagnostics guidance; 2022.

    Google Scholar 

  26. Regitz-Zagrosek V, Roos-Hesselink JW, Bauersachs J, et al. 2018 ESC Guidelines for the management of cardiovascular diseases during pregnancy. Eur Heart J. 2018;39(34):3165–241.

    Article  PubMed  Google Scholar 

  27. Hund M, Allegranza D, Schoedl M, Dilba P, Verhagen-Kamerbeek W, Stepan H. Multicenter prospective clinical study to evaluate the prediction of short-term outcome in pregnant women with suspected preeclampsia (PROGNOSIS): study protocol. BMC Pregnancy Childbirth. 2014;14(1):324.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zeisler H, Llurba E, Chantraine F, et al. Predictive value of the sFlt-1:PlGF ratio in women with suspected preeclampsia. N Engl J Med. 2016;374(1):13–22.

    Article  CAS  PubMed  Google Scholar 

  29. Stepan H, Herraiz I, Schlembach D, et al. Implementation of the sFlt-1/PlGF ratio for prediction and diagnosis of pre-eclampsia in singleton pregnancy: implications for clinical practice. Ultrasound Obstet Gynecol. 2015;45(3):241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhao M, Zhu Z, Liu C, Zhang Z. Dual-cutoff of sFlt-1/PlGF ratio in the stratification of preeclampsia: a systematic review and meta-analysis. Arch Gynecol Obstet. 2017;295(5):1079–87.

    Article  PubMed  Google Scholar 

  31. Rana S, Powe CE, Salahuddin S, et al. Angiogenic factors and the risk of adverse outcomes in women with suspected preeclampsia. Circulation. 2012;125(7):911–9. https://doi.org/10.1161/CIRCULATIONAHA.111.054361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Verlohren S, Herraiz I, Lapaire O, et al. The sFlt-1/PlGF ratio in different types of hypertensive pregnancy disorders and its prognostic potential in preeclamptic patients. Am J Obstet Gynecol. 2012;206(1):58.e1–8.

    Article  CAS  PubMed  Google Scholar 

  33. Bonacina E, Armengol-Alsina M, Hurtado I, et al. sFlt-1 to PlGF ratio cut-offs to predict adverse pregnancy outcomes in early-onset FGR and SGA: a prospective observational study. J Obstet Gynaecol. 2022;42(7):2840–5.

    Article  CAS  PubMed  Google Scholar 

  34. Signore C, Mills JL, Qian C, et al. Circulating angiogenic factors and placental abruption. Obstet Gynecol. 2006;108(2):338–44.

    Article  CAS  PubMed  Google Scholar 

  35. Kumar M, Balyan K, Debnath E, Shankar S, Apte A, Jha S. Role of sFLT-1/PlGF ratio in predicting severe adverse materno-fetal outcome in high risk women. Pregnancy Hypertens. 2022;30:154–60.

    Article  PubMed  Google Scholar 

  36. Herraiz I, Simón E, Gómez-Arriaga PI, et al. Clinical implementation of the sFlt-1/PlGF ratio to identify preeclampsia and fetal growth restriction: a prospective cohort study. Pregnancy Hypertens. 2018;13:279–85.

    Article  CAS  PubMed  Google Scholar 

  37. Kwiatkowski S, Dołegowska B, Kwiatkowska E, et al. Maternal endothelial damage as a disorder shared by early preeclampsia, late preeclampsia and intrauterine growth restriction. J Perinat Med. 2017;45(7):793–802.

    Article  CAS  PubMed  Google Scholar 

  38. Hendrix M, Bons J, Van Haren A, et al. Role of sFlt-1 and PlGF in the screening of small-for-gestational age neonates during pregnancy: a systematic review. Ann Clin Biochem Int J Lab Med. 2020;57(1):44–58.

    Article  Google Scholar 

  39. Triunfo S, Lobmaier S, Parra-Saavedra M, et al. Angiogenic factors at diagnosis of late-onset small-for-gestational age and histological placental underperfusion. Placenta. 2014;35(6):398–403.

    Article  CAS  PubMed  Google Scholar 

  40. Triunfo S, Crovetto F, Crispi F, et al. Association of first-trimester angiogenic factors with placental histological findings in late-onset preeclampsia. Placenta. 2016;42:44–50.

    Article  PubMed  Google Scholar 

  41. Kovo M, Schreiber L, Ben-Haroush A, Wand S, Golan A, Bar J. Placental vascular lesion differences in pregnancy-induced hypertension and normotensive fetal growth restriction. Am J Obstet Gynecol. 2010;202(6):561.e1–5.

    Article  PubMed  Google Scholar 

  42. Veerbeek JHW, Nikkels PGJ, Torrance HL, et al. Placental pathology in early intrauterine growth restriction associated with maternal hypertension. Placenta. 2014;35(9):696–701.

    Article  CAS  PubMed  Google Scholar 

  43. Vakil P, Henry A, Craig ME, Gow ML. A review of infant growth and psychomotor developmental outcomes after intrauterine exposure to preeclampsia. BMC Pediatr. 2022;22(1):513.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Villar J, Carroli G, Wojdyla D, et al. Preeclampsia, gestational hypertension and intrauterine growth restriction, related or independent conditions? Am J Obstet Gynecol. 2006;194(4):921–31.

    Article  PubMed  Google Scholar 

  45. Lees C, Marlow N, Arabin B, et al. Perinatal morbidity and mortality in early-onset fetal growth restriction: cohort outcomes of the trial of randomized umbilical and fetal flow in Europe (TRUFFLE): short-term outcomes following early FGR. Ultrasound Obstet Gynecol. 2013;42(4):400–8.

    Article  CAS  PubMed  Google Scholar 

  46. Arduini D, Rizzo G, Romanini C. The development of abnormal heart rate patterns after absent end-diastolic velocity in umbilical artery: analysis of risk factors. Am J Obstet Gynecol. 1993;168(1):43–50.

    Article  CAS  PubMed  Google Scholar 

  47. Bekedam DJ, Visser GHA, van der Zee AGJ, Snijders RJM, Poelmann-Weesjes G. Abnormal velocity waveforms of the umbilical artery in growth retarded fetuses: relationship to antepartum late heart rate decelerations and outcome. Early Hum Dev. 1990;24(1):79–89.

    Article  CAS  PubMed  Google Scholar 

  48. Hecher K, Hackelöer BJ. Cardiotocogram compared to Doppler investigation of the fetal circulation in the premature growth-retarded fetus: longitudinal observations: cardiotocography and fetal Doppler. Ultrasound Obstet Gynecol. 1997;9(3):152–61.

    Article  CAS  PubMed  Google Scholar 

  49. Mari G, Hanif F, Kruger M. Sequence of cardiovascular changes in IUGR in pregnancies with and without preeclampsia. Prenat Diagn. 2008;28(5):377–83.

    Article  PubMed  Google Scholar 

  50. Bar J, Weiner E, Levy M, Gilboa Y. The thrifty phenotype hypothesis: the association between ultrasound and Doppler studies in fetal growth restriction and the development of adult disease. Am J Obstet Gynecol MFM. 2021;3(6):100473.

    Article  PubMed  Google Scholar 

  51. Ashraf UM, Hall DL, Rawls AZ, Alexander BT. Epigenetic processes during preeclampsia and effects on fetal development and chronic health. Clin Sci. 2021;135(19):2307–27.

    Article  CAS  Google Scholar 

  52. De Boo HA, Harding JE. The developmental origins of adult disease (Barker) hypothesis. Aust N Z J Obstet Gynaecol. 2006;46(1):4–14.

    Article  PubMed  Google Scholar 

  53. Martyn CN, Gale CR, Jespersen S, Sherriff SB. Impaired fetal growth and atherosclerosis of carotid and peripheral arteries. Lancet. 1998;352(9123):173–8.

    Article  CAS  PubMed  Google Scholar 

  54. Chan PYL, Morris JM, Leslie GI, Kelly PJ, Gallery EDM. The long-term effects of prematurity and intrauterine growth restriction on cardiovascular, renal, and metabolic function. Int J Pediatr. 2010;2010:1–10.

    Article  Google Scholar 

  55. Schreuder M, Delemarre-van de Waal H, van Wijk A. Consequences of intrauterine growth restriction for the kidney. Kidney Blood Press Res. 2006;29(2):108–25.

    Article  CAS  PubMed  Google Scholar 

  56. Crispi F, Miranda J, Gratacós E. Long-term cardiovascular consequences of fetal growth restriction: biology, clinical implications, and opportunities for prevention of adult disease. Am J Obstet Gynecol. 2018;218(2):S869–79.

    Article  PubMed  Google Scholar 

  57. Alici Davutoglu E, Ozel A, Oztunc F, Madazli R. Modified myocardial performance index and its prognostic significance for adverse perinatal outcome in early and late onset fetal growth restriction. J Matern Fetal Neonatal Med. 2020;33(2):277–82.

    Article  CAS  PubMed  Google Scholar 

  58. Crispi F, Hernandez-Andrade E, Pelsers MMAL, et al. Cardiac dysfunction and cell damage across clinical stages of severity in growth-restricted fetuses. Am J Obstet Gynecol. 2008;199(3):254.e1–8.

    Article  PubMed  Google Scholar 

  59. Tranquilli AL, Landi B, Giannubilo SR, Sibai BM. Preeclampsia: no longer solely a pregnancy disease. Pregnancy Hypertens Int J Womens Cardiovasc Health. 2012;2(4):350–7.

    Google Scholar 

  60. Tenhola S, Rahiala E, Halonen P, Vanninen E, Voutilainen R. Maternal preeclampsia predicts elevated blood pressure in 12-year-old children: evaluation by ambulatory blood pressure monitoring. Pediatr Res. 2006;59(2):320–4.

    Article  PubMed  Google Scholar 

  61. Davis EF, Lazdam M, Lewandowski AJ, et al. Cardiovascular risk factors in children and young adults born to preeclamptic pregnancies: a systematic review. Pediatrics. 2012;129(6):e1552–61.

    Article  PubMed  Google Scholar 

  62. Pinheiro TV, Brunetto S, Ramos JGL, Bernardi JR, Goldani MZ. Hypertensive disorders during pregnancy and health outcomes in the offspring: a systematic review. J Dev Orig Health Dis. 2016;7(4):391–407.

    Article  CAS  PubMed  Google Scholar 

  63. Karatza AA, Dimitriou G. Preeclampsia emerging as a novel risk factor for cardiovascular disease in the offspring. Curr Pediatr Rev. 2020;16(3):194–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Lazdam M, de la Horra A, Pitcher A, et al. Elevated blood pressure in offspring born premature to hypertensive pregnancy: is endothelial dysfunction the underlying vascular mechanism? Hypertension. 2010;56(1):159–65.

    Article  CAS  PubMed  Google Scholar 

  65. Lewandowski AJ, Augustine D, Lamata P, et al. Preterm heart in adult life: cardiovascular magnetic resonance reveals distinct differences in left ventricular mass, geometry, and function. Circulation. 2013;127(2):197–206.

    Article  PubMed  Google Scholar 

  66. Youssef L, Miranda J, Paules C, et al. Fetal cardiac remodeling and dysfunction is associated with both preeclampsia and fetal growth restriction. Am J Obstet Gynecol. 2020;222(1):79.e1–9.

    Article  PubMed  Google Scholar 

  67. Crispi F, Domínguez C, Llurba E, Martín-Gallán P, Cabero L, Gratacós E. Placental angiogenic growth factors and uterine artery Doppler findings for characterization of different subsets in preeclampsia and in isolated intrauterine growth restriction. Am J Obstet Gynecol. 2006;195(1):201–7.

    Article  CAS  PubMed  Google Scholar 

  68. Kvehaugen AS, Dechend R, Ramstad HB, Troisi R, Fugelseth D, Staff AC. Endothelial function and circulating biomarkers are disturbed in women and children after preeclampsia. Hypertension. 2011;58(1):63–9.

    Article  CAS  PubMed  Google Scholar 

  69. Barker D, Eriksson J, Forsén T, Osmond C. Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol. 2002;31(6):1235–9.

    Article  CAS  PubMed  Google Scholar 

  70. Morrison JL, Duffield JA, Muhlhausler BS, Gentili S, McMillen IC. Fetal growth restriction, catch-up growth and the early origins of insulin resistance and visceral obesity. Pediatr Nephrol. 2010;25(4):669–77.

    Article  PubMed  Google Scholar 

  71. Dahlquist GG, Patterson C, Soltesz G. Perinatal risk factors for childhood type 1 diabetes in Europe. The EURODIAB Substudy 2 Study Group. Diabetes Care. 1999;22(10):1698–702.

    Article  CAS  PubMed  Google Scholar 

  72. Yang L, Huang C, Zhao M, et al. Maternal hypertensive disorders during pregnancy and the risk of offspring diabetes mellitus in childhood, adolescence, and early adulthood: a nationwide population-based cohort study. BMC Med. 2023;21(1):59.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Malhotra A, Allison BJ, Castillo-Melendez M, Jenkin G, Polglase GR, Miller SL. Neonatal morbidities of fetal growth restriction: pathophysiology and impact. Front Endocrinol. 2019;10:55.

    Article  Google Scholar 

  74. Gagliardi L, Rusconi F, Da Frè M, et al. Pregnancy disorders leading to very preterm birth influence neonatal outcomes: results of the population-based ACTION cohort study. Pediatr Res. 2013;73(6):794–801.

    Article  PubMed  Google Scholar 

  75. Collaborators of the hypertensive disorders of pregnancy study group, Rocha G, De Lima FF, Machado AP, Guimarães H. Preeclampsia predicts higher incidence of bronchopulmonary dysplasia. J Perinatol. 2018;38(9):1165–73.

    Article  Google Scholar 

  76. Hansen AR, Barnés CM, Folkman J, McElrath TF. Maternal preeclampsia predicts the development of bronchopulmonary dysplasia. J Pediatr. 2010;156(4):532–6.

    Article  PubMed  Google Scholar 

  77. Brembilla G, Righini A, Scelsa B, et al. Neuroimaging and neurodevelopmental outcome after early fetal growth restriction: NEUROPROJECT—FGR. Pediatr Res. 2021;90(4):869–75.

    Article  PubMed  Google Scholar 

  78. Baschat AA. Neurodevelopment after fetal growth restriction. Fetal Diagn Ther. 2014;36(2):136–42.

    Article  PubMed  Google Scholar 

  79. Morsing E, Brodszki J, Thuring A, Maršál K. Infant outcome after active management of early-onset fetal growth restriction with absent or reversed umbilical artery blood flow. Ultrasound Obstet Gynecol. 2021;57(6):931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Kajantie E, Eriksson JG, Osmond C, Thornburg K, Barker DJP. Pre-eclampsia is associated with increased risk of stroke in the adult offspring: the Helsinki Birth Cohort Study. Stroke. 2009;40(4):1176–80.

    Article  PubMed  Google Scholar 

  81. Li C, Miao JK, Xu Y, et al. Prenatal, perinatal and neonatal risk factors for perinatal arterial ischaemic stroke: a systematic review and meta-analysis. Eur J Neurol. 2017;24(8):1006–15.

    Article  CAS  PubMed  Google Scholar 

  82. Lehman LL, Rivkin MJ. Perinatal arterial ischemic stroke: presentation, risk factors, evaluation, and outcome. Pediatr Neurol. 2014;51(6):760–8.

    Article  PubMed  Google Scholar 

  83. van Esch JJA, van Heijst AF, de Haan AFJ, van der Heijden OWH. Early-onset preeclampsia is associated with perinatal mortality and severe neonatal morbidity. J Matern Fetal Neonatal Med. 2017;30(23):2789–94.

    Article  PubMed  Google Scholar 

  84. Jelin A, Cheng Y, Shaffer B, Kaimal A, Little S, Caughey A. Early-onset preeclampsia and neonatal outcomes. J Matern Fetal Neonatal Med. 2009;23:1–5.

    Article  Google Scholar 

  85. Kong L, Chen X, Liang Y, Forsell Y, Gissler M, Lavebratt C. Association of preeclampsia and perinatal complications with offspring neurodevelopmental and psychiatric disorders. JAMA Netw Open. 2022;5(1):e2145719.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Walker CK, Krakowiak P, Baker A, Hansen RL, Ozonoff S, Hertz-Picciotto I. Preeclampsia, placental insufficiency, and autism spectrum disorder or developmental delay. JAMA Pediatr. 2015;169(2):154. https://doi.org/10.1001/jamapediatrics.2014.2645.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Zheng W, Zhang X, Feng Y, et al. Association of corpus callosum development with fetal growth restriction and maternal preeclampsia or gestational hypertension. JAMA Netw Open. 2022;5(8):e2226696.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Warshafsky C, Pudwell J, Walker M, Wen SW, Smith GN. Prospective assessment of neurodevelopment in children following a pregnancy complicated by severe pre-eclampsia. BMJ Open. 2016;6(7):e010884.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Many A, Fattal A, Leitner Y, Kupferminc MJ, Harel S, Jaffa A. Neurodevelopmental and cognitive assessment of children born growth restricted to mothers with and without preeclampsia. Hypertens Pregnancy. 2003;22(1):25–9.

    Article  PubMed  Google Scholar 

  90. Morsing E, Maršál K. Pre-eclampsia—an additional risk factor for cognitive impairment at school age after intrauterine growth restriction and very preterm birth. Early Hum Dev. 2014;90(2):99–101.

    Article  CAS  PubMed  Google Scholar 

  91. Crispi F, Comas M, Hernández-Andrade E, et al. Does pre-eclampsia influence fetal cardiovascular function in early-onset intrauterine growth restriction? Ultrasound Obstet Gynecol. 2009;34(6):660–5.

    Article  CAS  PubMed  Google Scholar 

  92. Afzal-Ahmed I, Mann GE, Shennan AH, Poston L, Naftalin RJ. Preeclampsia inactivates glucose-6-phosphate dehydrogenase and impairs the redox status of erythrocytes and fetal endothelial cells. Free Radic Biol Med. 2007;42(12):1781–90.

    Article  CAS  PubMed  Google Scholar 

  93. Yuluğ E, Yenilmez E, Unsal MA, Aydin S, Tekelioglu Y, Arvas H. Apoptotic and morphological features of the umbilical artery endothelium in mild and severe pre-eclampsia. Acta Obstet Gynecol Scand. 2006;85(9):1038–45.

    Article  PubMed  Google Scholar 

  94. Marchi L, Pasquini L, Elvan-Taspinar A, Bilardo CM. Cardiovascular hemodynamic changes after antenatal corticosteroids in growth restricted and appropriate for gestational age fetuses. Ultraschall Med - Eur J Ultrasound. 2020;41(03):292–9.

    Article  Google Scholar 

  95. Fratelli N, Prefumo F, Wolf H, et al. Effects of antenatal betamethasone on fetal Doppler indices and short term fetal heart rate variation in early growth restricted fetuses. Ultraschall Med - Eur J Ultrasound. 2021;42(01):56–64.

    Article  Google Scholar 

  96. Morrison JL, Botting KJ, Soo PS, et al. Antenatal steroids and the IUGR fetus: are exposure and physiological effects on the lung and cardiovascular system the same as in normally grown fetuses? J Pregnancy. 2012;2012:1–15.

    Article  Google Scholar 

  97. Bernstein IM, Horbar JD, Badger GJ, Ohlsson A, Golan A. Morbidity and mortality among very-low-birth-weight neonates with intrauterine growth restriction. Am J Obstet Gynecol. 2000;182(1):198–206.

    Article  CAS  PubMed  Google Scholar 

  98. Magann EF, Bass D, Chauhan SP, Sullivan DL, Martin RW, Martin JN. Antepartum corticosteroids: disease stabilization in patients with the syndrome of hemolysis, elevated liver enzymes, and low platelets (HELLP). Am J Obstet Gynecol. 1994;171(4):1148–53.

    Article  CAS  PubMed  Google Scholar 

  99. Amorim MMR, Santosa LC, Faúndes A. Corticosteroid therapy for prevention of respiratory distress syndrome in severe preeclampsia. Am J Obstet Gynecol. 1999;180(5):1283–8.

    Article  CAS  PubMed  Google Scholar 

  100. van Runnard Heimel PJ, Huisjes AJM, Franx A, Koopman C, Bots ML, Bruinse HW. A randomised placebo-controlled trial of prolonged prednisolone administration to patients with HELLP syndrome remote from term. Eur J Obstet Gynecol Reprod Biol. 2006;128(1-2):187–93.

    Article  PubMed  Google Scholar 

  101. Hagen A, Ebert A, Lange J, Zemlin M, Hopp H. The impact of pregnancy-prolonging management on maternal and neonatal morbidity in HELLP-Syndrom. Zentralbl Gynakol. 2001;123(9):513–9.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Clemenza.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mecacci, F., Romani, E., Clemenza, S. et al. Early Fetal Growth Restriction with or Without Hypertensive Disorders: a Clinical Overview. Reprod. Sci. 31, 591–602 (2024). https://doi.org/10.1007/s43032-023-01330-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01330-9

Keywords

Navigation