Skip to main content

Advertisement

Log in

Increased Expression of TGF-β1 Contributes to the Downregulation of Progesterone Receptor Expression in the Eutopic Endometrium of Infertile Women with Minimal/Mild Endometriosis

  • Endometriosis: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Endometriosis is a hormone-dependent disease associated with impaired immunoregulation. In our recent study, we have characterized the trascriptomic transformation of eutopic endometrium from patients with minimal/mild endometriosis and controls across the menstrual cycle. However, the regulatory mechanism of altered immune microenvironment in eutopic endometrial stromal cells (ESCs) remains unclear. Here, we want to explore the regulation of immune cell to progesterone resistance and endometrial receptivity in the eutopic ESCs by cytokine (TGF-β1), and to understand the effect of TGF-β1 on the decidualization of the eutopic ESCs. Primary culture of eutopic ESCs was performed to explore the effects of TGF-β1 on the expression of Smad and progesterone receptor (PR) and the in vitro decidualization. Additionally, co-immunoprecipitation (Co-IP) was used to explore the direct interaction between Smad and PR. We found an attenuate expression of PRB protein (p=0.026) after using TGF-β1 in eutopic ESCs, although the difference of PRA before and after treatment was not significant (p=0.678). Similarly, the results of qRT-PCR showed that the mRNA level of PR (p<0.001), PRB (p=0.003) and HOXA10 (p<0.001) decreased significantly after TGF-β1 treatment, but that increased (p<0.023, for all) after SB431542 treatment in the eutopic ESCs. Moreover, TGF-β1 has a negative effect on the in vitro decidualization of eutopic ESCs (p=0.003). And the group with treatment of both TGF-β1 and SB435142 in eutopic ESCs showed significant decidual-like changes with increased prolactin level (p=0.01). We did not observe any physical interaction between the PR and p-Smad3/Smad3 proteins by using Co-IP. By activating TGF-β/Smad signaling in eutopic ESCs, elevated TGF-β1 from CD45+ immune cells could attenuate expression of PR, and further decrease endometrial receptivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The sing cell data of the current study are available in the NCBI’s Gene Expression Omnibus (accession code GSE214411).

References

  1. Zondervan KT, Becker CM, Missmer SA. Endometriosis. N Engl J Med. 2020;382(13):1244–56. https://doi.org/10.1056/NEJMra1810764.

    Article  CAS  PubMed  Google Scholar 

  2. The Practice Committee of the American Society for Reproductive Medicine. Endometriosis and infertility: a committee opinion. Fertil Steril. 2012;98(3):591–8. https://doi.org/10.1016/j.fertnstert.2012.05.031.

    Article  Google Scholar 

  3. Lessey BA, Kim JJ. Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show you why. Fertil Steril. 2017;108(1):19–27. https://doi.org/10.1016/j.fertnstert.2017.05.031.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bafort C, Beebeejaun Y, Tomassetti C, Bosteels J, Duffy JM. Laparoscopic surgery for endometriosis. Cochrane Database Syst Rev. 2020;10(10):Cd011031. https://doi.org/10.1002/14651858.CD011031.pub3.

    Article  PubMed  Google Scholar 

  5. Marcoux S, Maheux R, Bérubé S. Laparoscopic surgery in infertile women with minimal or mild endometriosis. Canadian Collaborative Group on Endometriosis. N Engl J Med. 1997;337(4):217–22. https://doi.org/10.1056/nejm199707243370401.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang X, Liu D, Huang W, Wang Q, Feng X, Tan J. Prediction of Endometriosis Fertility Index in patients with endometriosis-associated infertility after laparoscopic treatment. Reprod Biomed Online. 2018;37(1):53–9. https://doi.org/10.1016/j.rbmo.2018.03.012.

    Article  CAS  PubMed  Google Scholar 

  7. Kohl Schwartz AS, Wölfler MM, Mitter V, Rauchfuss M, Haeberlin F, Eberhard M, et al. Endometriosis, especially mild disease: a risk factor for miscarriages. Fertil Steril. 2017;108(5):806–14.e2. https://doi.org/10.1016/j.fertnstert.2017.08.025.

    Article  PubMed  Google Scholar 

  8. Valdes CT, Schutt A, Simon C. Implantation failure of endometrial origin: it is not pathology, but our failure to synchronize the developing embryo with a receptive endometrium. Fertil Steril. 2017;108(1):15–8. https://doi.org/10.1016/j.fertnstert.2017.05.033.

    Article  PubMed  Google Scholar 

  9. Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril. 2019;111(4):611–7. https://doi.org/10.1016/j.fertnstert.2019.02.009.

    Article  PubMed  Google Scholar 

  10. Brosens JJ, Hayashi N, White JO. Progesterone receptor regulates decidual prolactin expression in differentiating human endometrial stromal cells. Endocrinology. 1999;140(10):4809–20. https://doi.org/10.1210/endo.140.10.7070.

    Article  CAS  PubMed  Google Scholar 

  11. Kaya HS, Hantak AM, Stubbs LJ, Taylor RN, Bagchi IC, Bagchi MK. Roles of progesterone receptor A and B isoforms during human endometrial decidualization. Mol Endocrinol. 2015;29(6):882–95. https://doi.org/10.1210/me.2014-1363.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2015;21(2):155–73. https://doi.org/10.1093/humupd/dmu056.

    Article  CAS  PubMed  Google Scholar 

  13. Lu H, Yang X, Zhang Y, Lu R, Wang X. Epigenetic disorder may cause downregulation of HOXA10 in the eutopic endometrium of fertile women with endometriosis. Reprod Sci. 2013;20(1):78–84. https://doi.org/10.1177/1933719112451146.

    Article  CAS  PubMed  Google Scholar 

  14. Schmitz CR, Oehninger S, Genro VK, Chandra N, Lattanzio F, Yu L, et al. Alterations in expression of endometrial milk fat globule-EGF factor 8 (MFG-E8) and leukemia inhibitory factor (LIF) in patients with infertility and endometriosis. JBRA Assist Reprod. 2017;21(4):313–20. https://doi.org/10.5935/1518-0557.20170056.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Patel BG, Rudnicki M, Yu J, Shu Y, Taylor RN. Progesterone resistance in endometriosis: origins, consequences and interventions. Acta Obstet Gynecol Scand. 2017;96(6):623–32. https://doi.org/10.1111/aogs.13156.

    Article  CAS  PubMed  Google Scholar 

  16. Marquardt RM, Kim TH, Shin JH, Jeong JW. Progesterone and estrogen signaling in the endometrium: what goes wrong in endometriosis? Int J Mol Sci. 2019;20(15). https://doi.org/10.3390/ijms20153822.

  17. Wu Y, Strawn E, Basir Z, Halverson G, Guo SW. Promoter hypermethylation of progesterone receptor isoform B (PR-B) in endometriosis. Epigenetics. 2006;1(2):106–11. https://doi.org/10.4161/epi.1.2.2766.

    Article  PubMed  Google Scholar 

  18. Zelenko Z, Aghajanova L, Irwin JC, Giudice LC. Nuclear receptor, coregulator signaling, and chromatin remodeling pathways suggest involvement of the epigenome in the steroid hormone response of endometrium and abnormalities in endometriosis. Reprod Sci. 2012;19(2):152–62. https://doi.org/10.1177/1933719111415546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhou M, Fu J, Xiao L, Yang S, Song Y, Zhang X, et al. miR-196a overexpression activates the MEK/ERK signal and represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Hum Reprod. 2016;31(11):2598–608. https://doi.org/10.1093/humrep/dew223.

    Article  CAS  PubMed  Google Scholar 

  20. Pei T, Liu C, Liu T, Xiao L, Luo B, Tan J, et al. miR-194-3p Represses the progesterone receptor and decidualization in eutopic endometrium from women with endometriosis. Endocrinology. 2018;159(7):2554–62. https://doi.org/10.1210/en.2018-00374.

    Article  CAS  PubMed  Google Scholar 

  21. Lessey BA, Lebovic DI, Taylor RN. Eutopic endometrium in women with endometriosis: ground zero for the study of implantation defects. Semin Reprod Med. 2013;31(2):109–24. https://doi.org/10.1055/s-0032-1333476.

    Article  PubMed  Google Scholar 

  22. Vannuccini S, Clifton VL, Fraser IS, Taylor HS, Critchley H, Giudice LC, et al. Infertility and reproductive disorders: impact of hormonal and inflammatory mechanisms on pregnancy outcome. Hum Reprod Update. 2016;22(1):104–15. https://doi.org/10.1093/humupd/dmv044.

    Article  CAS  PubMed  Google Scholar 

  23. Casslén B, Sandberg T, Gustavsson B, Willén R, Nilbert M. Transforming growth factor beta1 in the human endometrium. Cyclic variation, increased expression by estradiol and progesterone, and regulation of plasminogen activators and plasminogen activator inhibitor-1. Biol Reprod. 1998;58(6):1343–50. https://doi.org/10.1095/biolreprod58.6.1343.

    Article  PubMed  Google Scholar 

  24. Kim MR, Park DW, Lee JH, Choi DS, Hwang KJ, Ryu HS, et al. Progesterone-dependent release of transforming growth factor-beta1 from epithelial cells enhances the endometrial decidualization by turning on the Smad signalling in stromal cells. Mol Hum Reprod. 2005;11(11):801–8. https://doi.org/10.1093/molehr/gah240.

    Article  CAS  PubMed  Google Scholar 

  25. Oosterlynck DJ, Meuleman C, Waer M, Koninckx PR. Transforming growth factor-beta activity is increased in peritoneal fluid from women with endometriosis. Obstet Gynecol. 1994;83(2):287–92.

    CAS  PubMed  Google Scholar 

  26. Chegini N, Gold LI, Williams RS. Localization of transforming growth factor beta isoforms TGF-beta 1, TGF-beta 2, and TGF-beta 3 in surgically induced endometriosis in the rat. Obstet Gynecol. 1994;83(3):455–61.

    CAS  PubMed  Google Scholar 

  27. Ma L, Andrieu T, McKinnon B, Duempelmann L, Peng RW, Wotzkow C, et al. Epithelial-to-mesenchymal transition contributes to the downregulation of progesterone receptor expression in endometriosis lesions. J Steroid Biochem Mol Biol. 2021;212:105943. https://doi.org/10.1016/j.jsbmb.2021.105943.

    Article  CAS  PubMed  Google Scholar 

  28. Vallve-Juanico J, Houshdaran S, Giudice LC. The endometrial immune environment of women with endometriosis. Hum Reprod Update. 2019;25(5):564–91. https://doi.org/10.1093/humupd/dmz018.

    Article  CAS  PubMed  Google Scholar 

  29. Canis M, Donnez JG, Guzick DS, Halme JK, Rock JA, Schenken RS, Vernon MW. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertil Steril. 1997;67(5):817–21. https://doi.org/10.1016/s0015-0282(97)81391-x.

    Article  Google Scholar 

  30. Huang X, Wu L, Pei T, Liu D, Liu C, Luo B, et al. Single-cell transcriptome analysis reveals endometrial immune microenvironment in minimal/mild endometriosis. Clin Exp Immunol. 2023;212(3):285–95. https://doi.org/10.1093/cei/uxad029.

    Article  PubMed  Google Scholar 

  31. Lachapelle MH, Hemmings R, Roy DC, Falcone T, Miron P. Flow cytometric evaluation of leukocyte subpopulations in the follicular fluids of infertile patients. Fertil Steril. 1996;65(6):1135–40. https://doi.org/10.1016/s0015-0282(16)58327-7.

    Article  CAS  PubMed  Google Scholar 

  32. Bunis DG, Wang W, Vallvé-Juanico J, Houshdaran S, Sen S, Ben Soltane I, et al. Whole-tissue deconvolution and scRNAseq analysis identify altered endometrial cellular compositions and functionality associated with endometriosis. Front Immunol. 2021;12:788315. https://doi.org/10.3389/fimmu.2021.788315.

    Article  CAS  PubMed  Google Scholar 

  33. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221(1):80–7. https://doi.org/10.1111/j.1749-6632.2010.05938.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Saito S, Tsukaguchi N, Hasegawa T, Michimata T, Tsuda H, Narita N. Distribution of Th1, Th2, and Th0 and the Th1/Th2 cell ratios in human peripheral and endometrial T cells. Am J Reprod Immunol. 1999;42(4):240–5. https://doi.org/10.1111/j.1600-0897.1999.tb00097.x.

    Article  CAS  PubMed  Google Scholar 

  35. Chen S, Zhang J, Huang C, Lu W, Liang Y, Wan X. Expression of the T regulatory cell transcription factor FoxP3 in peri-implantation phase endometrium in infertile women with endometriosis. Reprod Biol Endocrinol. 2012;10:34. https://doi.org/10.1186/1477-7827-10-34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ingman WV, Robertson SA. Defining the actions of transforming growth factor beta in reproduction. Bioessays. 2002;24(10):904–14. https://doi.org/10.1002/bies.10155.

    Article  CAS  PubMed  Google Scholar 

  37. Itoh H, Kishore AH, Lindqvist A, Rogers DE, Word RA. Transforming growth factor β1 (TGFβ1) and progesterone regulate matrix metalloproteinases (MMP) in human endometrial stromal cells. J Clin Endocrinol Metab. 2012;97(6):E888–97. https://doi.org/10.1210/jc.2011-3073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kane N, Jones M, Brosens JJ, Saunders PT, Kelly RW, Critchley HO. Transforming growth factor-beta1 attenuates expression of both the progesterone receptor and Dickkopf in differentiated human endometrial stromal cells. Mol Endocrinol. 2008;22(3):716–28. https://doi.org/10.1210/me.2007-0316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Kim JJ, Taylor HS, Lu Z, Ladhani O, Hastings JM, Jackson KS, et al. Altered expression of HOXA10 in endometriosis: potential role in decidualization. Mol Hum Reprod. 2007;13(5):323–32. https://doi.org/10.1093/molehr/gam005.

    Article  CAS  PubMed  Google Scholar 

  40. Fambrini M, Sorbi F, Bussani C, Cioni R, Sisti G, Andersson KL. Hypermethylation of HOXA10 gene in mid-luteal endometrium from women with ovarian endometriomas. Acta Obstet Gynecol Scand. 2013;92(11):1331–4. https://doi.org/10.1111/aogs.12236.

    Article  CAS  PubMed  Google Scholar 

  41. Doherty LF, Taylor HS. Leiomyoma-derived transforming growth factor-β impairs bone morphogenetic protein-2-mediated endometrial receptivity. Fertil Steril. 2015;103(3):845–52. https://doi.org/10.1016/j.fertnstert.2014.12.099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Vićovac LM, Starkey PM, Aplin JD. Comment: effect of cytokines on prolactin production by human decidual stromal cells in culture: studies using cells freed of bone marrow-derived contaminants. J Clin Endocrinol Metab. 1994;79(6):1877–82. https://doi.org/10.1210/jcem.79.6.7989496.

    Article  PubMed  Google Scholar 

  43. Mazella J, Tang M, Tseng L. Disparate effects of relaxin and TGFbeta1: relaxin increases, but TGFbeta1 inhibits, the relaxin receptor and the production of IGFBP-1 in human endometrial stromal/decidual cells. Hum Reprod. 2004;19(7):1513–8. https://doi.org/10.1093/humrep/deh274.

    Article  CAS  PubMed  Google Scholar 

  44. Coya R, Alvarez CV, Perez F, Gianzo C, Diéguez C. Effects of TGF-beta1 on prolactin synthesis and secretion: an in-vitro study. J Neuroendocrinol. 1999;11(5):351–60. https://doi.org/10.1046/j.1365-2826.1999.00336.x.

    Article  CAS  PubMed  Google Scholar 

  45. Stoikos CJ, Harrison CA, Salamonsen LA, Dimitriadis E. A distinct cohort of the TGFbeta superfamily members expressed in human endometrium regulate decidualization. Hum Reprod. 2008;23(6):1447–56. https://doi.org/10.1093/humrep/den110.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Thackray VG, Mellon PL. Synergistic induction of follicle-stimulating hormone beta-subunit gene expression by gonadal steroid hormone receptors and Smad proteins. Endocrinology. 2008;149(3):1091–102. https://doi.org/10.1210/en.2007-1498.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to all study participants, doctors, and operating room nurses at West China Second University Hospital of Sichuan University.

Funding

This study was supported by the National Natural Science Foundation of China (Grant number: 82071625).

Author information

Authors and Affiliations

Authors

Contributions

LW designed and performed the experiments and analyzed data, drafted the manuscript. XH designed and performed the experiments and analyzed data, and revised the manuscript. RW and JL assisted with experiments and analyzed data. HZ and YO contributed to sample collection and supervised the research. WH designed and supervised the research, revised the manuscript, and approved the final vision.

Corresponding author

Correspondence to Wei Huang.

Ethics declarations

Ethics Approval

The study was approved by the Ethics Committee of West China second University Hospital of Sichuan University (Grant number:2021028).

Consent to Participate

Written informed consents were obtained from all participants.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, L., Huang, X., Wang, R. et al. Increased Expression of TGF-β1 Contributes to the Downregulation of Progesterone Receptor Expression in the Eutopic Endometrium of Infertile Women with Minimal/Mild Endometriosis. Reprod. Sci. 30, 3578–3589 (2023). https://doi.org/10.1007/s43032-023-01315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01315-8

Keywords

Navigation