Skip to main content
Log in

Unraveling the Clinical Relevance of Ferroptosis-Related Genes in Human Ovarian Aging

  • Infertility: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Ferroptosis, a recently discovered form of cell death, has been implicated in various diseases. However, the genetic relationship between ferroptosis and ovarian aging has not been thoroughly investigated through informatics analysis. In this study, we conducted bioinformatics analysis using ovarian aging and ferroptosis datasets to identify potential ferroptosis-related genes using R software. The expression levels of these genes at different ages were analyzed using the GTEx public database. To validate these findings at the genetic level, we performed clinical infertility biopsies. Bioinformatics analysis of a mouse ovary dataset revealed significantly higher expression of Tfrc, Ncoa4, and Slc3a2 in the aging group compared to the young group, while Gpx4 showed the opposite pattern. Consistent results were observed in biopsies from clinically aged infertile patients. This study is the first to identify a ferroptosis-related gene associated with ovarian aging, highlighting its potential as a diagnostic biomarker.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Finch CE, Holmes DJ. Ovarian aging in developmental and evolutionary contexts. Ann N Y Acad Sci. 2010;1204:82–94.

    Article  PubMed  Google Scholar 

  2. Giorgi C, Marchi S, Simoes ICM, Ren Z, Morciano G, Perrone M, Patalas-Krawczyk P, Borchard S, Jedrak P, Pierzynowska K, Szymanski J, Wang DQ, Portincasa P, Wegrzyn G, Zischka H, Dobrzyn P, Bonora M, Duszynski J, Rimessi A, Karkucinska-Wieckowska A, Dobrzyn A, Szabadkai G, Zavan B, Oliveira PJ, Sardao VA, Pinton P, Wieckowski MR. Mitochondria and reactive oxygen species in aging and age-related diseases. Int Rev Cell Mol Biol. 2018;340:209–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Li CJ, Lin LT, Tsai HW, Chern CU, Wen ZH, Wang PH, Tsui KH. The molecular regulation in the pathophysiology in ovarian aging. Aging Dis. 2021;12(3):934–49.

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Vet A, Laven JS, de Jong FH, Themmen AP, Fauser BC. Antimullerian hormone serum levels: a putative marker for ovarian aging. Fertil Steril. 2002;77(2):357–62.

    Article  PubMed  Google Scholar 

  5. Chen X, Yu C, Kang R, Tang D. Iron metabolism in ferroptosis. Front Cell Dev Biol. 2020;8:590226.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Koppula P, Zhuang L, Gan B. Cystine transporter SLC7A11/xCT in cancer: ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 2021;12(8):599–620.

    Article  CAS  PubMed  Google Scholar 

  8. Ju J, Song YN, Wang K. Mechanism of ferroptosis: a potential target for cardiovascular diseases treatment. Aging Dis. 2021;12(1):261–76.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gao H, Bai Y, Jia Y, Zhao Y, Kang R, Tang D, Dai E. Ferroptosis is a lysosomal cell death process. Biochem Biophys Res Commun. 2018;503(3):1550–6.

    Article  CAS  PubMed  Google Scholar 

  10. Shin D, Kim EH, Lee J, Roh JL. Nrf2 inhibition reverses resistance to GPX4 inhibitor-induced ferroptosis in head and neck cancer. Free Radic Biol Med. 2018;129:454–62.

    Article  CAS  PubMed  Google Scholar 

  11. Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, Upadhyayula PS, Canoll P, Uchida K, Soni RK, Hadian K, Stockwell BR. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 2020;30(10):3411-3423 e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Maiorino M, Conrad M, Ursini F. GPx4, lipid peroxidation, and cell death: discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 2018;29(1):61–74.

    Article  CAS  PubMed  Google Scholar 

  13. Sun L, Dong H, Zhang W, Wang N, Ni N, Bai X, Liu N. Lipid peroxidation, GSH depletion, and SLC7A11 inhibition are common causes of EMT and ferroptosis in A549 cells, but different in specific mechanisms. DNA Cell Biol. 2021;40(2):172–83.

    Article  CAS  PubMed  Google Scholar 

  14. Bannai S, Kitamura E. Transport interaction of L-cystine and L-glutamate in human diploid fibroblasts in culture. J Biol Chem. 1980;255(6):2372–6.

    Article  CAS  PubMed  Google Scholar 

  15. Xu X, Zhang X, Wei C, Zheng D, Lu X, Yang Y, Luo A, Zhang K, Duan X, Wang Y. Targeting SLC7A11 specifically suppresses the progression of colorectal cancer stem cells via inducing ferroptosis. Eur J Pharm Sci. 2020;152:105450.

    Article  CAS  PubMed  Google Scholar 

  16. Mancias JD, Wang X, Gygi SP, Harper JW, Kimmelman AC. Quantitative proteomics identifies NCOA4 as the cargo receptor mediating ferritinophagy. Nature. 2014;509(7498):105–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Santana-Codina N, Gikandi A, Mancias JD. The role of NCOA4-mediated ferritinophagy in ferroptosis. Adv Exp Med Biol. 2021;1301:41–57.

    Article  CAS  PubMed  Google Scholar 

  18. Gao M, Monian P, Pan Q, Zhang W, Xiang J, Jiang X. Ferroptosis is an autophagic cell death process. Cell Res. 2016;26(9):1021–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li CJ, Chang CH, Tsang YL, Fang SH, Chen SN, Chiang AJ. Prognostic significance of ferroptosis pathway gene signature and correlation with macrophage infiltration in cervical squamous cell carcinoma. Int Immunopharmacol. 2022;112:109273.

    Article  CAS  PubMed  Google Scholar 

  20. Han X, Wang R, Zhou Y, Fei L, Sun H, Lai S, Saadatpour A, Zhou Z, Chen H, Ye F, Huang D, Xu Y, Huang W, Jiang M, Jiang X, Mao J, Chen Y, Lu C, Xie J, Fang Q, Wang Y, Yue R, Li T, Huang H, Orkin SH, Yuan GC, Chen M, Guo G. Mapping the mouse cell atlas by microwell-seq. Cell. 2018;173(5):1307.

    Article  CAS  PubMed  Google Scholar 

  21. Russ JE, Haywood ME, Lane SL, Schoolcraft WB, Katz-Jaffe MG. Spatially resolved transcriptomic profiling of ovarian aging in mice. iScience. 2022;25(8):104819.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li CJ, Lin LT, Tsai HW, Wen ZH, Tsui KH. Phosphoglycerate mutase family member 5 maintains oocyte quality via mitochondrial dynamic rearrangement during aging. Aging Cell. 2022;21(2):e13546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hansen KR, Knowlton NS, Thyer AC, Charleston JS, Soules MR, Klein NA. A new model of reproductive aging: the decline in ovarian non-growing follicle number from birth to menopause. Hum Reprod. 2008;23(3):699–708.

    Article  PubMed  Google Scholar 

  24. Tsang YL, Kao CL, Lin SA, Li CJ. Mitochondrial dysfunction and oxidative stress in aging and disease. Biomedicines. 2022;10(11):2872.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Goldman KN. The quest for biomarkers linking ovarian aging and longevity. Fertil Steril. 2022;118(1):134–5.

    Article  PubMed  Google Scholar 

  26. Mazhar M, Din AU, Ali H, Yang G, Ren W, Wang L, Fan X, Yang S. Implication of ferroptosis in aging. Cell Death Discov. 2021;7(1):149.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Cao JY, Dixon SJ. Mechanisms of ferroptosis. Cell Mol Life Sci. 2016;73(11–12):2195–209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Friedmann Angeli JP, Schneider M, Proneth B, Tyurina YY, Tyurin VA, Hammond VJ, Herbach N, Aichler M, Walch A, Eggenhofer E, Basavarajappa D, Radmark O, Kobayashi S, Seibt T, Beck H, Neff F, Esposito I, Wanke R, Forster H, Yefremova O, Heinrichmeyer M, Bornkamm GW, Geissler EK, Thomas SB, Stockwell BR, O’Donnell VB, Kagan VE, Schick JA, Conrad M. Inactivation of the ferroptosis regulator Gpx4 triggers acute renal failure in mice. Nat Cell Biol. 2014;16(12):1180–91.

    Article  CAS  PubMed  Google Scholar 

  29. Ng SW, Norwitz SG, Norwitz ER. The impact of iron overload and ferroptosis on reproductive disorders in humans: implications for preeclampsia. Int J Mol Sci. 2019;20(13):3283.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yureneva S, Averkova V, Silachev D, Donnikov A, Gavisova A, Serov V, Sukhikh G. Searching for female reproductive aging and longevity biomarkers. Aging (Albany NY). 2021;13(12):16873–94.

    Article  CAS  PubMed  Google Scholar 

  31. Ng SW, Norwitz SG, Taylor HS, Norwitz ER. Endometriosis: the role of iron overload and ferroptosis. Reprod Sci. 2020;27(7):1383–90.

    Article  CAS  PubMed  Google Scholar 

  32. Kelsey T. Models and biomarkers for ovarian ageing. Subcell Biochem. 2023;103:185–99.

    Article  PubMed  Google Scholar 

Download references

Funding

This research was funded by the Ministry of Science Technology (MOST 111–2314-B-075B-014-MY3, 111–2314-B-075B-004-MY3), Kaohsiung Veterans General Hospital (VGHKS111-144, 111–145, 111–147, and 111-D06-1), and Yen Tjing Ling Medical Foundation (CI-111–16 and CI-112–10).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiin-Tsuey Cheng or Kuan-Hao Tsui.

Ethics declarations

Ethics Approval

This study was approved by the Institutional Review Board of the Kaohsiung Veterans General Hospital (KSVGH21-CT1-43). All procedures conducted in this study were in accordance with the principles stated in the Declaration of Helsinki.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Identification of ferroptosis-related genes as diagnostic markers for ovarian aging.

• Predictive value of ferroptosis-related genes in infertility patients.

• Clinical biopsy validates the link between ferroptosis-related genes and ovarian aging.

• Ferroptosis-related genes as potential biomarkers for ovarian aging.

• The role of ferroptosis-related genes in assessing ovarian aging through clinical biopsy.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, PH., Li, CJ., Lin, LT. et al. Unraveling the Clinical Relevance of Ferroptosis-Related Genes in Human Ovarian Aging. Reprod. Sci. 30, 3529–3536 (2023). https://doi.org/10.1007/s43032-023-01310-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01310-z

Keywords

Navigation