Skip to main content

Advertisement

Log in

Body Fat Distribution and Female Infertility: a Cross-Sectional Analysis Among US Women

  • Infertility: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

At present, the effect of body fat distribution on female reproductive health is still inconclusive. The purpose of our study was to analyze the correlation between female infertility rates and the fat mass portion of the android region to the gynoid region (the A/G ratio) among US women of reproductive age. Female infertility is defined as a failure to get pregnant after 12 months of unprotected sexual activity. A total of 3434 women of reproductive age were included in this study as part of the 2013–2018 National Health and Nutrition Examination Survey (NHANES). The A/G ratio was used to assess the body fat distribution of participants. Based on the comprehensive study design and sample weights, it was determined that the A/G ratio was associated with female infertility primarily through logistic regression analyses. After adjusting for potential confounders, the multivariate regression analysis indicated an increase in the A/G ratio was correlated with an increase in the prevalence of female infertility (OR = 4.374, 95% CI:1.809–10.575). Subgroup analyses showed an increased prevalence of infertility in non-Hispanic Whites (P = 0.012), non-diabetic individuals (P = 0.008), individuals under 35 years old (P = 0.002), and individuals with secondary infertility (P = 0.01). The trend tests and smooth curve fitting illustrate a linear trend between the A/G ratio and female infertility. Future researches are warranted to confirm the causal relationship between body fat distribution and female infertility, which may provide an insight into future prevention and treatment of female infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

The survey data are publicly available on the internet for data users and researchers throughout the world http://www.cdc.gov/nchs/nhanes/.

Code Availability

All statistical analyses were conducted using SAS; programs are available from the corresponding author upon request.

Abbreviations

A/G ratio:

The fat mass portion of the android region to the gynoid region

NHANES:

National Health and Nutrition Examination Survey

CDC:

Centers for Disease Control

PCOS:

Polycystic ovary syndrome

DXA:

Dual-energy X-ray absorptiometry

NCHS:

National Center for Health Statistics

PIR:

Poverty to income ratio

GAM:

The generalized additive model

MRI:

Magnetic resonance imaging

CT:

Computed tomography

References

  1. Carson SA, Kallen AN. Diagnosis and management of infertility: a review. JAMA. 2021;326(1):65–76. https://doi.org/10.1001/jama.2021.4788.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ou XH, Zhu CC, Sun SC. Effects of obesity and diabetes on the epigenetic modification of mammalian gametes. J Cell Physiol. 2019;234(6):7847–55. https://doi.org/10.1002/jcp.27847.

    Article  CAS  PubMed  Google Scholar 

  3. Macaluso M, Wright-Schnapp TJ, Chandra A, et al. A public health focus on infertility prevention, detection, and management. Fertil Steril. 2010;93(1):16.e1-10. https://doi.org/10.1016/j.fertnstert.2008.09.046.

    Article  PubMed  Google Scholar 

  4. Jaacks LM, Vandevijvere S, Pan A, et al. The obesity transition: stages of the global epidemic. Lancet Diabetes Endocrinol. 2019;7(3):231–40. https://doi.org/10.1016/S2213-8587(19)30026-9.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Zhu L, Zhou B, Zhu X, et al. Association between body mass index and female infertility in the United States: data from National Health and Nutrition Examination Survey 2013–2018. Int J Gen Med. 2022;15:1821–31. https://doi.org/10.2147/IJGM.S349874.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liou TH, Yang JH, Hsieh CH, Lee CY, Hsu CS, Hsu MI. Clinical and biochemical presentations of polycystic ovary syndrome among obese and nonobese women. Fertil Steril. 2009;92(6):1960–5. https://doi.org/10.1016/j.fertnstert.2008.09.003.

    Article  CAS  PubMed  Google Scholar 

  7. Barber TM, Golding SJ, Alvey C, et al. Global adiposity rather than abnormal regional fat distribution characterizes women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2008;93(3):999–1004. https://doi.org/10.1210/jc.2007-2117.

    Article  CAS  PubMed  Google Scholar 

  8. Dolfing JG, Stassen CM, van Haard PM, Wolffenbuttel BH, Schweitzer DH. Comparison of MRI-assessed body fat content between lean women with polycystic ovary syndrome (PCOS) and matched controls: less visceral fat with PCOS. Hum Reprod. 2011;26(6):1495–500. https://doi.org/10.1093/humrep/der070.

    Article  CAS  PubMed  Google Scholar 

  9. Wass P, Waldenström U, Rössner S, Hellberg D. An android body fat distribution in females impairs the pregnancy rate of in-vitro fertilization-embryo transfer. Hum Reprod. 1997;12(9):2057–60. https://doi.org/10.1093/humrep/12.9.2057.

    Article  CAS  PubMed  Google Scholar 

  10. Messina C, Albano D, Gitto S, et al. Body composition with dual energy X-ray absorptiometry: from basics to new tools. Quant Imaging Med Surg. 2020;10(8):1687–98. https://doi.org/10.21037/qims.2020.03.02.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Zhu K, Walsh JP, Murray K, Hunter M, Hui J, Hung J. DXA-derived vs standard anthropometric measures for predicting cardiometabolic risk in middle-aged australian men and women. J Clin Densitom. 2022;25(3):299–307. https://doi.org/10.1016/j.jocd.2022.01.006.

    Article  PubMed  Google Scholar 

  12. Lu Z, Tilly MJ, Aribas E, et al. Imaging-based body fat depots and new-onset atrial fibrillation in general population: a prospective cohort study. BMC Med. 2022;20(1):317. https://doi.org/10.1186/s12916-022-02505-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ma M, Liu X, Jia G, Geng B, Xia Y. The association between body fat distribution and bone mineral density: evidence from the US population. BMC Endocr Disord. 2022;22(1):170. https://doi.org/10.1186/s12902-022-01087-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Godinho-Mota J, Gonçalves LV, Soares LR, et al. Abdominal adiposity and physical inactivity are positively associated with breast cancer: a case-control study. Biomed Res Int. 2018;2018:4783710. https://doi.org/10.1155/2018/4783710.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Xiao Z, Xu H. Gender-specific body composition relationships between adipose tissue distribution and peak bone mineral density in young Chinese adults. Biomed Res Int. 2020;2020:6724749. https://doi.org/10.1155/2020/6724749.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Ciardullo S, Oltolini A, Cannistraci R, Muraca E, Perseghin G. Sex-related association of nonalcoholic fatty liver disease and liver fibrosis with body fat distribution in the general US population. Am J Clin Nutr. 2022;115(6):1528–34. https://doi.org/10.1093/ajcn/nqac059.

    Article  PubMed  Google Scholar 

  17. Curtin LR, Mohadjer LK, Dohrmann SM, et al. The National Health and Nutrition Examination Survey: sample design, 1999–2006. Vital Health Stat 2. 2012;155:1–39.

    Google Scholar 

  18. Shepherd JA, Fan B, Lu Y, et al. A multinational study to develop universal standardization of whole-body bone density and composition using GE Healthcare Lunar and Hologic DXA systems. J Bone Miner Res. 2012;27(10):2208–16. https://doi.org/10.1002/jbmr.1654.

    Article  PubMed  Google Scholar 

  19. Venkatesh SS, Ferreira T, Benonisdottir S, et al. Obesity and risk of female reproductive conditions: a Mendelian randomisation study. PLoS Med. 2022;19(2):e1003679. https://doi.org/10.1371/journal.pmed.1003679.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Lainez NM, Coss D. Obesity, Neuroinflammation, and reproductive function. Endocrinology. 2019;160(11):2719–36. https://doi.org/10.1210/en.2019-00487.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Zaadstra BM, Seidell JC, Van Noord PA, et al. Fat and female fecundity: prospective study of effect of body fat distribution on conception rates. BMJ. 1993;306(6876):484–7. https://doi.org/10.1136/bmj.306.6876.484.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Adamska A, Raczkowski A, Stachurska Z, et al. Body composition and serum concentration of thyroid hormones in euthyroid men and women from general population. J Clin Med. 2022;11(8). https://doi.org/10.3390/jcm11082118

  23. Adamska A, Popławska-Kita A, Siewko K, et al. Body composition and serum anti-Müllerian hormone levels in euthyroid caucasian women with hashimoto thyroiditis. Front Endocrinol (Lausanne). 2021;12:657752. https://doi.org/10.3389/fendo.2021.657752.

    Article  PubMed  Google Scholar 

  24. Delitala AP, Capobianco G, Delitala G, Cherchi PL, Dessole S. Polycystic ovary syndrome, adipose tissue and metabolic syndrome. Arch Gynecol Obstet. 2017;296(3):405–19. https://doi.org/10.1007/s00404-017-4429-2.

    Article  CAS  PubMed  Google Scholar 

  25. Pierre A, Taieb J, Giton F, et al. Dysregulation of the anti-Müllerian hormone system by steroids in women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017;102(11):3970–8. https://doi.org/10.1210/jc.2017-00308.

    Article  PubMed  Google Scholar 

  26. Polak AM, Adamska A, Krentowska A, et al. Body composition, serum concentrations of androgens and insulin resistance in different polycystic ovary syndrome phenotypes. J Clin Med. 2020;9(3). https://doi.org/10.3390/jcm9030732

  27. Jiang K, Luan H, Pu X, Wang M, Yin J, Gong R. Association between visceral adiposity index and insulin resistance: a cross-sectional study based on US adults. Front Endocrinol (Lausanne). 2022;13:921067. https://doi.org/10.3389/fendo.2022.921067.

    Article  PubMed  Google Scholar 

  28. Brüning JC, Gautam D, Burks DJ, et al. Role of brain insulin receptor in control of body weight and reproduction. Science. 2000;289(5487):2122–5. https://doi.org/10.1126/science.289.5487.2122.

    Article  PubMed  Google Scholar 

  29. Dickmann U, Ritter G, Kretzschmar H. Pemphigoid and cerebral infarct. Syntropy of 2 diseases? Case report. Nervenarzt. 1986;57(5):309–10.

    CAS  PubMed  Google Scholar 

  30. Marseglia L, Manti S, D’Angelo G, et al. Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci. 2014;16(1):378–400. https://doi.org/10.3390/ijms16010378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Velez LM, Seldin M, Motta AB. Inflammation and reproductive function in women with polycystic ovary syndrome†. Biol Reprod. 2021;104(6):1205–17. https://doi.org/10.1093/biolre/ioab050.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Martin JH, Nixon B, Cafe SL, Aitken RJ, Bromfield EG, Lord T. Oxidative stress and reproductive function: oxidative stress and in vitro ageing of the post-ovulatory oocyte: an update on recent advances in the field. Reproduction. 2022;164(6):F109–24. https://doi.org/10.1530/REP-22-0206.

    Article  CAS  PubMed  Google Scholar 

  33. Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond). 2010;34(6):949–59. https://doi.org/10.1038/ijo.2009.286.

    Article  CAS  PubMed  Google Scholar 

  34. Abdo NM, Ahmad H, Loney T, et al. Characterization of fertility clinic attendees in the Abu Dhabi Emirate, United Arab Emirates: a cross-sectional study. Int J Environ Res Public Health. 2023;20(3)

  35. Dongarwar D, Mercado-Evans V, Adu-Gyamfi S, Laracuente ML, Salihu HM. Racial/ethnic disparities in infertility treatment utilization in the US, 2011–2019. Syst Biol Reprod Med. 2022;68(3):180–9. https://doi.org/10.1080/19396368.2022.2038718.

    Article  PubMed  Google Scholar 

  36. Komorowski AS, Jain T. A review of disparities in access to infertility care and treatment outcomes among Hispanic women. Reprod Biol Endocrinol. 2022;20(1):1. https://doi.org/10.1186/s12958-021-00875-1.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Eller A, Ejzenberg D, Monteleone P, Soares JJ, Baracat EC. Vitamin D and in vitro fertilization: a systematic review. J Assist Reprod Genet. 2023. https://doi.org/10.1007/s10815-023-02767-2.

    Article  PubMed  Google Scholar 

  38. Hajhashemy Z, Foshati S, Saneei P. Relationship between abdominal obesity (based on waist circumference) and serum vitamin D levels: a systematic review and meta-analysis of epidemiologic studies. Nutr Rev. 2022;80(5):1105–17. https://doi.org/10.1093/nutrit/nuab070.

    Article  PubMed  Google Scholar 

  39. Guerrero R, Vega GL, Grundy SM, Browning JD. Ethnic differences in hepatic steatosis: an insulin resistance paradox? Hepatology. 2009;49(3):791–801. https://doi.org/10.1002/hep.22726.

    Article  PubMed  Google Scholar 

  40. Thong EP, Codner E, Laven J, Teede H. Diabetes: a metabolic and reproductive disorder in women. Lancet Diabetes Endocrinol. 2020;8(2):134–49. https://doi.org/10.1016/S2213-8587(19)30345-6.

    Article  CAS  PubMed  Google Scholar 

  41. Sharpe A, Morley LC, Tang T, Norman RJ, Balen AH. Metformin for ovulation induction (excluding gonadotrophins) in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;12(12):CD013505. https://doi.org/10.1002/14651858.CD013505.

    Article  PubMed  Google Scholar 

  42. Morley LC, Tang T, Yasmin E, Norman RJ, Balen AH. Insulin-sensitising drugs (metformin, rosiglitazone, pioglitazone, D-chiro-inositol) for women with polycystic ovary syndrome, oligo amenorrhoea and subfertility. Cochrane Database Syst Rev. 2017;11(11):CD003053. https://doi.org/10.1002/14651858.CD003053.pub6.

    Article  PubMed  Google Scholar 

  43. Codner E, Merino PM, Tena-Sempere M. Female reproduction and type 1 diabetes: from mechanisms to clinical findings. Hum Reprod Update. 2012;18(5):568–85. https://doi.org/10.1093/humupd/dms024.

    Article  CAS  PubMed  Google Scholar 

  44. Dyńka D, Kowalcze K, Ambrozkiewicz F, Paziewska A. Effect of the ketogenic diet on the prophylaxis and treatment of diabetes mellitus: a review of the meta-analyses and clinical trials. Nutrients. 2023;15(3). https://doi.org/10.3390/nu15030500

  45. Gutierrez-Mariscal FM, Alcalá-Diaz JF, Quintana-Navarro GM, et al. Changes in quantity plant-based protein intake on type 2 diabetes remission in coronary heart disease patients: from the CORDIOPREV study. Eur J Nutr. 2023. https://doi.org/10.1007/s00394-022-03080-x.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Kulak D, Polotsky AJ. Should the ketogenic diet be considered for enhancing fertility? Maturitas. 2013;74(1):10–3. https://doi.org/10.1016/j.maturitas.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  47. Kim K, Yisahak SF, Nobles CJ, et al. Low intake of vegetable protein is associated with altered ovulatory function among healthy women of reproductive age. J Clin Endocrinol Metab. 2021;106(7):e2600–12. https://doi.org/10.1210/clinem/dgab179.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cao Q, Zheng R, He R, et al. Age-specific prevalence, subtypes and risk factors of metabolic diseases in Chinese adults and the different patterns from other racial/ethnic populations. BMC Public Health. 2022;22(1):2078. https://doi.org/10.1186/s12889-022-14555-1.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the staff and the participants of the NHANES study for their valuable contributions.

Funding

This work was supported by the National Natural Science Foundation of China Youth Fund (No.82104903).

Author information

Authors and Affiliations

Authors

Contributions

R Zhu collected data. HW Han organized the study and performed the statistical analysis. XZ Wang and J Jin drafted the manuscript, to which all authors contributed, and approved the final version for publication.

Corresponding author

Correspondence to Jing Jin.

Ethics declarations

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. All analyses were based on data of the National Health and Nutrition Examination Survey (NHANES). The study was approved by the ethics review board of the National Center for Health Statistics. The detailed information is located on the NHANES website. Written informed consent was obtained from each participant before their inclusion on the NHANES database. Detailed information on the ethics application and written informed consent are provided on the NHANES website.

Consent to Participate

The America National Center for Health Statistics has obtained informed consent from each participant before their inclusion. Detailed information is provided on the NHANES website.

Consent for Publication

The participant has consented to the submission of the research article to the journal.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 10 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhu, R., Han, H. et al. Body Fat Distribution and Female Infertility: a Cross-Sectional Analysis Among US Women. Reprod. Sci. 30, 3243–3252 (2023). https://doi.org/10.1007/s43032-023-01280-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01280-2

Keywords

Navigation