Skip to main content

Advertisement

Log in

Targeted Amino Acids Profiling of Human Seminal Plasma from Teratozoospermia Patients Using LC–MS/MS

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Identifying the metabolome of human seminal plasma (HSP) is a new research area to screen putative biomarkers of infertility. This case–control study was performed on HSP specimens of 15 infertile patients with teratozoospermia (defined as normal sperm morphology < 4%) and 12 confirmed fertile normozoospermic men as the control group to investigate the seminal metabolic signature and whether there are differences in the metabolome between two groups. HSPs were subjected to LC–MS-MS analysis. MetaboAnalyst5.0 software was utilized for statistical analysis. Different univariate and multivariate analyses were used, including T-tests, fold change analysis, random forest (RF), and metabolite set enrichment analysis (MSEA). Teratozoospermic samples contained seventeen significantly different amino acids. Upregulated metabolites include glutamine, asparagine, and glycylproline, whereas downregulated metabolites include cysteine, γ-aminobutyric acid, histidine, hydroxylysine, hydroxyproline, glycine, proline, methionine, ornithine, tryptophan, aspartic acid, argininosuccinic acid, α-aminoadipic acid, and β-aminoisobutyric acid. RF algorithm defined a set of 15 metabolites that constitute the significant features of teratozoospermia. In particular, increased glutamine, asparagine, and decreased cysteine, tryptophan, glycine, and valine were strong predictors of teratozoospemia. The most affected metabolic pathways in teratozoospermic men are the aminoacyl-tRNA, arginine, valine-leucine, and isoleucine biosynthesis. Altered metabolites detected in teratozoospermia were responsible for various roles in sperm functions that classified into four subgroups as follows: related metabolites to antioxidant function, energy production, sperm function, and spermatogenesis. The altered amino acid metabolome identified in this study may be related to the etiology of teratozoospermia, and may provide novel insight into potential biomarkers of male infertility for therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author, upon reasonable request.

Code Availability

Not applicable.

References

  1. Zegers-Hochschild F, Adamson GD, De Mouzon J, Ishihara O, Mansour R, Nygren K. International Committee for Monitoring Assisted Reproductive Technology and the World Health Organization (WHO) revised glossary of ART terminology, 2009. Fertil Steril. 2009;92(5):1520–4.

    Article  CAS  PubMed  Google Scholar 

  2. World Health O. WHO laboratory manual for the examination and processing of human semen. 6th ed. Geneva: World Health Organization; 2021.

    Google Scholar 

  3. Wang C, Swerdloff RS. Limitations of semen analysis as a test of male fertility and anticipated needs from newer tests. Fertil Steril. 2014;102(6):1502–7. https://doi.org/10.1016/j.fertnstert.2014.10.021.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Moazzam A, Choudhary MN, Muhammad I, Sarwat J, Ijaz A. From basic to contemporary semen analysis: limitations and variability. J Anim Plant Sci. 2015;25(2):328–336.

  5. Bieniek JM, Drabovich AP, Lo KC. Seminal biomarkers for the evaluation of male infertility. Asian J Androl. 2016;18(3):426–33. https://doi.org/10.4103/1008-682X.175781.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Slama R, Eustache F, Ducot B, Jensen TK, Jørgensen N, Horte A, et al. Time to pregnancy and semen parameters: a cross-sectional study among fertile couples from four European cities. Hum Reprod. 2002;17(2):503–15.

    Article  CAS  PubMed  Google Scholar 

  7. Buck Louis GM, Sundaram R, Schisterman EF, Sweeney A, Lynch CD, Kim S, et al. Semen quality and time to pregnancy: the Longitudinal Investigation of Fertility and the Environment Study. Fertil Steril. 2014;101(2):453–62. https://doi.org/10.1016/j.fertnstert.2013.10.022.

    Article  PubMed  Google Scholar 

  8. Cao X, Cui Y, Zhang X, Lou J, Zhou J, Wei R. The correlation of sperm morphology with unexplained recurrent spontaneous abortion: a systematic review and meta-analysis. Oncotarget. 2017;8(33):55646–56. https://doi.org/10.18632/oncotarget.17233.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Li B, Ma Y, Huang J, Xiao X, Li L, Liu C, et al. Probing the effect of human normal sperm morphology rate on cycle outcomes and assisted reproductive methods selection. PLoS ONE. 2014;9(11):e113392–e113392. https://doi.org/10.1371/journal.pone.0113392.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lin JB, Troyer D. Testicular Anatomy and Physiology. In: McManus LM, Mitchell RN, editors. Pathobiology of Human Disease. San Diego: Academic Press; 2014. p. 2464–75.

    Chapter  Google Scholar 

  11. Porambo JR, Salicioni AM, Visconti PE, Platt MD. Sperm phosphoproteomics: historical perspectives and current methodologies. Expert Rev Proteomics. 2012;9(5):533–48. https://doi.org/10.1586/epr.12.41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bucci D, Rodriguez-Gil JE, Vallorani C, Spinaci M, Galeati G, Tamanini C. GLUTs and mammalian sperm metabolism. J Androl. 2011;32(4):348–55.

    Article  CAS  PubMed  Google Scholar 

  13. Suarez SS, Wolfner MF. Seminal plasma plays important roles in fertility. In: De Jonge CJ, Barratt CLR, editors. The Sperm Cell: Production, Maturation, Fertilization, Regeneration. Cambridge: Cambridge University Press; 2017. p. 88–108.

    Chapter  Google Scholar 

  14. Gilany K, Minai-Tehrani A, Savadi-Shiraz E, Rezadoost H, Lakpour N. Exploring the human seminal plasma proteome: an unexplored gold mine of biomarker for male infertility and male reproduction disorder. J Reprod Infertil. 2015;16(2):61.

    PubMed  PubMed Central  Google Scholar 

  15. Batruch I, Lecker I, Kagedan D, Smith CR, Mullen BJ, Grober E, et al. Proteomic analysis of seminal plasma from normal volunteers and post-vasectomy patients identifies over 2000 proteins and candidate biomarkers of the urogenital system. J Proteome Res. 2011;10(3):941–53.

    Article  CAS  PubMed  Google Scholar 

  16. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: beyond biomarkers and towards mechanisms. Nat Rev Mol Cell Biol. 2016;17(7):451–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Engel KM, Baumann S, Rolle-Kampczyk U, Schiller J, von Bergen M, Grunewald S. Metabolomic profiling reveals correlations between spermiogram parameters and the metabolites present in human spermatozoa and seminal plasma. PLoS ONE. 2019;14(2): e0211679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Xu Y, Lu H, Wang Y, Zhang Z, Wu Q. Comprehensive metabolic profiles of seminal plasma with different forms of male infertility and their correlation with sperm parameters. J Pharm Biomed Anal. 2020;177: 112888.

    Article  CAS  PubMed  Google Scholar 

  19. Mehrparavar B, Minai-Tehrani A, Arjmand B, Gilany K. Metabolomics of male infertility: a new tool for diagnostic tests. J Reprod Infertil. 2019;20(2):64.

    PubMed  PubMed Central  Google Scholar 

  20. Jouannet P, Ducot B, Feneux D, Spira A. Male factors and the likelihood of pregnancy in infertile couples. I. Study of sperm characteristics. Int J Androl. 1988;11(5):379–94.

    Article  CAS  PubMed  Google Scholar 

  21. Acosta AA, Kruger TF. Human spermatozoa in assisted reproduction. Taylor & Francis, 1996, p. 53–72.

  22. Piraud M, Vianey-Saban C, Petritis K, Elfakir C, Steghens JP, Bouchu D. Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom. 2005;19(12):1587–602.

    Article  CAS  PubMed  Google Scholar 

  23. Wieder C, Frainay C, Poupin N, Rodríguez-Mier P, Vinson F, Cooke J, et al. Pathway analysis in metabolomics: recommendations for the use of over-representation analysis. PLoS Comput Biol. 2021;17(9):e1009105–e1009105. https://doi.org/10.1371/journal.pcbi.1009105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Clulow J, Jones RC. Composition of Luminal fluid secreted by the seminiferous tubules and after reabsorption by the extratesticular ducts of the japanese quail, coturnix coturnix japonica1. Biol Reprod. 2004;71(5):1508–16. https://doi.org/10.1095/biolreprod.104.031401.

    Article  CAS  PubMed  Google Scholar 

  25. James ER, Carrell DT, Aston KI, Jenkins TG, Yeste M, Salas-Huetos A. The role of the epididymis and the contribution of epididymosomes to mammalian reproduction. Int J Mol Sci. 2020;21(15):5377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qiao S, Wu W, Chen M, Tang Q, Xia Y, Jia W, et al. Seminal plasma metabolomics approach for the diagnosis of unexplained male infertility. PLoS One. 2017;12(8): e0181115.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Alipour H, Duus RK, Wimmer R, Dardmeh F, Du Plessis S, Jørgensen N, et al. Seminal plasma metabolomics profiles following long (4–7 days) and short (2 h) sexual abstinence periods. Eur J Obstet Gynecol Reprod Biol. 2021;264:178–83.

    Article  CAS  PubMed  Google Scholar 

  28. Chen X, Hu C, Dai J, Chen L. Metabolomics analysis of seminal plasma in infertile males with Kidney-Yang deficiency: a preliminary study. Evid Based Complement Alternat Med. 2015;2015:892930. https://doi.org/10.1155/2015/892930.

  29. Gilany K, Moazeni-Pourasil RS, Jafarzadeh N, Savadi-Shiraz E. Metabolomics fingerprinting of the human seminal plasma of asthenozoospermic patients. Mol Reprod Dev. 2014;81(1):84–6.

    Article  CAS  PubMed  Google Scholar 

  30. da Silva B, Del Giudice P, Spaine D, Gozzo F, Turco EL, Bertolla R. Metabolomics of male infertility: characterization of seminal plasma lipid fingerprints in men with spinal cord injury. Fertil Steril. 2011;96(3):S233.

    Article  Google Scholar 

  31. Yu YC, Han JM, Kim S. Aminoacyl-tRNA synthetases and amino acid signaling. Biochim Biophys Acta (BBA) - Mol Cell Res. 2021;1868(1):118889. https://doi.org/10.1016/j.bbamcr.2020.118889.

    Article  CAS  Google Scholar 

  32. Thundathil J, de Lamirande E, Gagnon C. Nitric oxide regulates the phosphorylation of the threonine-glutamine-tyrosine motif in proteins of human spermatozoa during capacitation. Biol Reprod. 2003;68(4):1291–8.

    Article  CAS  PubMed  Google Scholar 

  33. Koohestanidehaghi Y, Torkamanpari M, Shirmohamadi Z, Lorian K, Vatankhah M. The effect of cysteine and glutamine on human sperm functional parameters during vitrification. Andrologia. 2021;53(1): e13870.

    Article  CAS  PubMed  Google Scholar 

  34. Curi R, Lagranha CJ, Doi SQ, Sellitti DF, Procopio J, Pithon-Curi TC, et al. Molecular mechanisms of glutamine action. J Cell Physiol. 2005;204(2):392–401. https://doi.org/10.1002/jcp.20339.

    Article  CAS  PubMed  Google Scholar 

  35. Li P, Wu G. Roles of dietary glycine, proline, and hydroxyproline in collagen synthesis and animal growth. Amino Acids. 2018;50(1):29–38.

    Article  CAS  PubMed  Google Scholar 

  36. Gibbs GM, Scanlon MJ, Swarbrick J, Curtis S, Gallant E, Dulhunty AF, et al. The cysteine-rich secretory protein domain of Tpx-1 is related to ion channel toxins and regulates ryanodine receptor Ca2+ signaling. J Biol Chem. 2006;281(7):4156–63.

    Article  CAS  PubMed  Google Scholar 

  37. Koppers AJ, Reddy T, O’Bryan MK. The role of cysteine-rich secretory proteins in male fertility. Asian J Androl. 2011;13(1):111–7. https://doi.org/10.1038/aja.2010.77.

    Article  CAS  PubMed  Google Scholar 

  38. D’Aniello G, Ronsini S, Guida F, Spinelli P, D’Aniello A. Occurrence of D-aspartic acid in human seminal plasma and spermatozoa: possible role in reproduction. Fertil Steril. 2005;84(5):1444–9.

    Article  PubMed  Google Scholar 

  39. Srivastava S, Desai P, Coutinho E, Govil G. Mechanism of action of L-arginine on the vitality of spermatozoa is primarily through increased biosynthesis of nitric oxide. Biol Reprod. 2006;74(5):954–8. https://doi.org/10.1095/biolreprod.105.046896.

    Article  CAS  PubMed  Google Scholar 

  40. Patel AB, Srivastava S, Phadke RS, Govil G. Arginine activates glycolysis of goat epididymal spermatozoa: an NMR study. Biophys J. 1998;75(3):1522–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. El-Shahat K, Taysser M, Badr M, Zaki K. Effect of L-arginine treatment on motility, hyperactivity, acrosome reaction of ejaculated ram spermatozoa. Anim Reprod. 2018;13(2):75–80.

    Article  Google Scholar 

  42. Balhorn R. The protamine family of sperm nuclear proteins. Genome Biol. 2007;8(9):1–8.

    Article  Google Scholar 

  43. Coutton C, Escoffier J, Martinez G, Arnoult C, Ray PF. Teratozoospermia: spotlight on the main genetic actors in the human. Hum Reprod Update. 2015;21(4):455–85. https://doi.org/10.1093/humupd/dmv020.

    Article  CAS  PubMed  Google Scholar 

  44. Kopets R, Kuibida I, Chernyavska I, Cherepanyn V, Mazo R, Fedevych V, et al. Dietary supplementation with a novel l-carnitine multi-micronutrient in idiopathic male subfertility involving oligo-, astheno-, teratozoospermia: a randomized clinical study. Andrology. 2020;8(5):1184–93.

    Article  CAS  PubMed  Google Scholar 

  45. Pegg AE. Mammalian polyamine metabolism and function. IUBMB Life. 2009;61(9):880–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Özer Kaya Ş, Gür S, Kaya E. Effect of l-arginine addition on long-term storability of ram semen. Andrologia. 2018;50(4): e12945.

    Article  Google Scholar 

  47. Amaral A, Castillo J, Ramalho-Santos J, Oliva R. The combined human sperm proteome: cellular pathways and implications for basic and clinical science. Hum Reprod Update. 2014;20(1):40–62.

    Article  CAS  PubMed  Google Scholar 

  48. Çoyan K, Başpınar N, Bucak MN, Akalın PP, Ataman MB, Ömür AD, et al. Influence of methionine and dithioerythritol on sperm motility, lipid peroxidation and antioxidant capacities during liquid storage of ram semen. Res Vet Sci. 2010;89(3):426–31.

    Article  PubMed  Google Scholar 

  49. Mohammed D. Effect of excess lysine and methionine on immune system and performance of broilers. Ann Biol Res. 2012;3(7):3218–24.

    Google Scholar 

  50. Li P, Guo W, Yue H, Li C, Du H, Qiao X, et al. Variability in the protein profiles in spermatozoa of two sturgeon species. PLoS ONE. 2017;12(10): e0186003.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Kurata S, Hiradate Y, Umezu K, Hara K, Tanemura K. Capacitation of mouse sperm is modulated by gamma-aminobutyric acid (GABA) concentration. J Reprod Dev. 2019;65(4):327–34. https://doi.org/10.1262/jrd.2019-008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Talbot S, Diaz F, Gutierrez-Castillo E, Walker C, de Aguiar L, Bondioli K. Effect of glycine and creatine on the in vitro capacitation-related events in frozen/thawed equine sperm. Reprod Fertil Dev. 2021;34(2):284–284.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The research leading to these results received funding from Avicenna Research Institute under Grant Agreement No 970412–057.

Author information

Authors and Affiliations

Authors

Contributions

E.H contributed to the analysis and interpretation of data, and drafted the manuscript; N.A.J participated in the design of the study and patient recruitment; R.H and M.B contributed to the analysis and interpretation of data; R.H was involved in the revising manuscript critically for data interpretation. H.M contributed to the data acquisition. K.G participated in the design of the study, interpretation of data, and drafting of the manuscript; all authors were involved in revising the manuscript critically for data interpretation, and final approval of manuscript.

Corresponding author

Correspondence to Kambiz Gilany.

Ethics declarations

The study was approved by the Ethics Committee of Islamic Azad Tehran Medical Sciences University-Pharmacy and Pharmaceutical Branches Faculty (NO, IR.IAU.PS.REC.1398.041).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent to Publish

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1279 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, E., Amirjannati, N., Henkel, R. et al. Targeted Amino Acids Profiling of Human Seminal Plasma from Teratozoospermia Patients Using LC–MS/MS. Reprod. Sci. 30, 3285–3295 (2023). https://doi.org/10.1007/s43032-023-01272-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01272-2

Keywords

Navigation