Skip to main content

Advertisement

Log in

Histochemical, Immunohistochemical, and Biochemical Investigation of the Effect of Resveratrol on Testicular Damage Caused by Methotrexate (MTX)

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Cancer is one of the world’s major causes of death. The aim of this study is to examine the acute effects of resveratrol on testicular toxicity, oxidative stress, and apoptosis caused by MTX, which is widely used in the treatment of many diseases, especially cancer, histochemically, immunohistochemically, and biochemical methods using different parameters. A total of 32 Wistar albino male rats were randomly divided into 4 groups: control, resveratrol (RES), MTX, and MTX + RES, with 8 animals in each group. At the end of the experiment, tissue and blood samples were taken, and histochemical, immunohistochemical, and biochemical parameters were examined. In this study, where parameters were compared for the first time, total thiol (TT) and native thiol (NT) are the highest in the RES group, disulfide (DS), and ischemia-modified albumin (IMA) are the highest in the MTX group. Total oxidant status (TOS) and oxidative stress index (OSI) are the highest in the MTX group, and total antioxidant status (TAS) is the highest in the RES group. Separation and deterioration in the tunica albuginea, congestion and edema in the interstitial region, vacuolization in the seminiferous epithelium, and spermatogenic serial cells spilling into the lumen without completing their maturation were observed. When examined in terms of histochemical, immunohistochemical, and biochemical examinations, our study revealed that resveratrol has positive effects on methotrexate-induced acute testicular damage, oxidative stress, and apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

The datasets used and/or analyzed during the current study are available from the corresponding author upon reasonable request.

References

  1. Baykara O. Current modalities in treatment of cancer. Balıkesır Heal Sci J. 2016;5(3):154–65. https://doi.org/10.5505/bsbd.2016.93823.

    Article  Google Scholar 

  2. Mian M, Tinelli M, De March E, Turri G, Meneghini V, Pescosta N, et al. Bortezomib, thalidomide and lenalidomide: have they really changed the outcome of multiple myeloma? Anticancer Res. 2016;36(3):1059–65.

    CAS  PubMed  Google Scholar 

  3. Madhu P, Reddy KP, Reddy PS. Role of melatonin in mitigating chemotherapy-induced testicular dysfunction in Wistar rats. Drug Chem Toxicol. 2016;39(2):137–46. https://doi.org/10.3109/01480545.2015.1055359.

    Article  CAS  PubMed  Google Scholar 

  4. Haghi-Aminjan H, Asghari MH, Farhood B, Rahimifard M, Hashemi Goradel N, Abdollahi M. The role of melatonin on chemotherapy-induced reproductive toxicity. J Pharm Pharmacol. 2018;70(3):291–306. https://doi.org/10.1111/jphp.12855.

    Article  CAS  PubMed  Google Scholar 

  5. Bedoui Y, Guillot X, Sélambarom J, Guiraud P, Giry C, Jaffar-Bandjee MC, et al. Methotrexate an old drug with new tricks. Int J Mol Sci. 2019;20(20):5023. https://doi.org/10.3390/ijms20205023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chan ESL, Cronstein BN. Mechanisms of action of methotrexate. Bull Hosp Jt Dis. 2013;71(Suppl 1):S5-8.

    Google Scholar 

  7. Scully CJ, Anderson CJ, Cannon GW. Long-term methotrexate therapy for rheumatoid arthritis. Semin Arthritis Rheum. 1991;20(5):317–31. https://doi.org/10.1016/0049-0172(91)90032-u.

    Article  CAS  PubMed  Google Scholar 

  8. Elango T, Thirupathi A, Subramanian S, Ethiraj P, Dayalan H, Gnanaraj P. Methotrexate treatment provokes apoptosis of proliferating keratinocyte in psoriasis patients. Clin Exp Med. 2017;17(3):371–81. https://doi.org/10.1007/s10238-016-0431-4.

    Article  CAS  PubMed  Google Scholar 

  9. Bath RK, Brar NK, Forouhar FA, Wu GY. A review of methotrexate-associated hepatotoxicity. J Dig Dis. 2014;15(10):517–24. https://doi.org/10.1111/1751-2980.12184.

    Article  CAS  PubMed  Google Scholar 

  10. Nouri HS, Azarmi Y, Movahedin M. Effect of growth hormone on testicular dysfunction induced by methotrexate in rats. Andrologia. 2009;41(2):105–10. https://doi.org/10.1111/j.1439-0272.2008.00897.x.

    Article  CAS  PubMed  Google Scholar 

  11. Gulgun M, Erdem O, Oztas E, Kesik V, Balamtekin N, Vurucu S, et al. Proanthocyanidin prevents methotrexate-induced intestinal damage and oxidative stress. Exp Toxicol Pathol. 2010;62(2):109–15. https://doi.org/10.1016/j.etp.2009.02.120.

    Article  CAS  PubMed  Google Scholar 

  12. Vardi N, Parlakpinar H, Ates B, Cetin A, Otlu A. Antiapoptotic and antioxidant effects of beta-carotene against methotrexate-induced testicular injury. Fertil Steril. 2009;92(6):2028–33. https://doi.org/10.1016/j.fertnstert.2008.09.015.

    Article  CAS  PubMed  Google Scholar 

  13. Shin S, Jeon JH, Park D, Jang M-J, Choi JH, Choi B-H, et al. Trans-resveratrol relaxes the corpus cavernosum ex vivo and enhances testosterone levels and sperm quality in vivo. Arch Pharm Res. 2008;31(1):83–7. https://doi.org/10.1007/s12272-008-1124-7.

    Article  CAS  PubMed  Google Scholar 

  14. Juan ME, González-Pons E, Munuera T, Ballester J, Rodríguez-Gil JE, Planas JM. Trans-resveratrol, a natural antioxidant from grapes, increases sperm output in healthy rats. J Nutr. 2005;135(4):757–60. https://doi.org/10.1093/jn/135.4.757.

    Article  CAS  PubMed  Google Scholar 

  15. Revel A, Raanani H, Younglai E, Xu J, Han R, Savouret JF, et al. Resveratrol, a natural aryl hydrocarbon receptor antagonist, protects sperm from DNA damage and apoptosis caused by benzo(a)pyrene. Reprod Toxicol. 2001;15(5):479–86. https://doi.org/10.1016/s0890-6238(01)00149-6.

    Article  CAS  PubMed  Google Scholar 

  16. Jiang Y, Peng T, Luo Y, Li MLY. Resveratrol reestablishes spermatogenesis after testicular injury in rats caused by 2, 5-hexanedione. Chin Med J. 2008;121(13):1204–9.

    Article  CAS  PubMed  Google Scholar 

  17. Yulug E, Turedi S, Alver A, Turedi S, Kahraman C. Effects of resveratrol on methotrexate-ınduced testicular damage in rats. Bratislava Med J. 2015;116(11):676–80. https://doi.org/10.4149/bll_2015_132.

    Article  CAS  Google Scholar 

  18. Leonard SS, Xia C, Jiang BH, Stinefelt B, Klandorf H, Harris GK, et al. Resveratrol scavenges reactive oxygen species and effects radical-induced cellular responses. Biochem Biophys Res Commun. 2003Oct 3;309(4):1017–26. https://doi.org/10.1016/j.bbrc.2003.08.105.

    Article  CAS  PubMed  Google Scholar 

  19. Savas HB, Gultekin FCI. Positive effects of meal frequency and calorie restriction on antioxidant systems in rats. North Clin Istanb. 2017;26(4):109–16. https://doi.org/10.14744/nci.2017.21548.

    Article  Google Scholar 

  20. Abdel-Wahhab MA, Nada SA, Arbid MS. Ochratoxicosis: prevention of developmental toxicity by L-methionine in rats. J Appl Toxicol. 1999;19(1):7–12. https://doi.org/10.1002/(sici)1099-1263(199901/02)19:1%3c7::aid-jat529%3e3.0.co;2-g.

    Article  CAS  PubMed  Google Scholar 

  21. Buyukozturk S. Sosyal Bilimler için Veri Analizi El Kitabı İstatistik, Araştırma Deseni SPSS Uygulamaları ve Yorum. 28th ed. Ankara: Pegem Akademi; 2012. 210 p.

  22. Shapiro S, Wilk M. An analysis of variance test for normality (complete samples). Biometrika. 1965;52(3–4):591–611. https://doi.org/10.2307/2333709.

    Article  Google Scholar 

  23. Argyriou AA, Bruna J, Marmiroli P, Cavaletti G. Chemotherapy-induced peripheral neurotoxicity (CIPN): an update. Crit Rev Oncol Hematol. 2012;82(1):51–77. https://doi.org/10.1016/j.critrevonc.2011.04.012.

    Article  PubMed  Google Scholar 

  24. Blumenfeld Z. Chemotherapy and fertility. Best Pr Res Clin Obs Gynaecol. 2012;26(3):379–90. https://doi.org/10.1016/j.bpobgyn.2011.11.008.

    Article  Google Scholar 

  25. Shrestha S, Dhungel S, Saxena AK, Bhattacharya S, Maskey D. Effect of methotrexate (MTX) administration on spermatogenesis: an experimental on animal model. Nepal Med Coll J. 2007;9(4):230–3.

    CAS  PubMed  Google Scholar 

  26. Padmanabhan S, Tripathi DN, Vikram A, Ramarao P, Jena GB. Cytotoxic and genotoxic effects of methotrexate in germ cells of male Swiss mice. Mutat Res - Genet Toxicol Environ Mutagen. 2008;655(1–2):59–67. https://doi.org/10.1016/j.mrgentox.2008.07.003.

    Article  CAS  Google Scholar 

  27. Daggulli M, Dede O, Utangac MM, Bodakci MN, Hatipoglu NK, Penbegul N, et al. Protective effects of carvacrol against methotrexate-induced testicular toxicity in rats. Int J Clin Exp Med. 2014;7(12):5511–6.

    PubMed  PubMed Central  Google Scholar 

  28. Karbandi S, Momenizadeh A, Hydarzadeh M, Mazlom R, Hasanzadeh M. The effect of mother empowerment program on mothers’ attachment to their hospitalized premature neonates. Evid Based Care. 2015;5(2):7–14.

    Google Scholar 

  29. León J, Acuña-Castroviejo D, Escames G, Tan DX, Reiter RJ. Melatonin mitigates mitochondrial malfunction. J Pineal Res. 2005;38(1):1–9. https://doi.org/10.1111/j.1600-079X.2004.00181.x.

    Article  CAS  PubMed  Google Scholar 

  30. Hartl FU. Molecular chaperones in cellular protein folding. Nature. 1996;381(6583):571–9. https://doi.org/10.1038/381571a0.

    Article  CAS  PubMed  Google Scholar 

  31. Kim H-E, Jiang X, Du F, Wang X. PHAPI, CAS, and Hsp70 promote apoptosome formation by preventing Apaf-1 aggregation and enhancing nucleotide exchange on Apaf-1. Mol Cell. 2008;30(2):239–47. https://doi.org/10.1016/j.molcel.2008.03.014.

    Article  CAS  PubMed  Google Scholar 

  32. Güvenç M, Aksakal M. Ameliorating effect of kisspeptin-10 on methotrexate-induced sperm damages and testicular oxidative stress in rats. Andrologia. 2018;50(8):e13057. https://doi.org/10.1111/and.13057.

    Article  CAS  PubMed  Google Scholar 

  33. Wang Y, Chen Y, Guan L, Zhang H, Huang Y, Johnson CH, et al. Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ. 2018;25(4):733–46. https://doi.org/10.1038/s41418-017-0013-3.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the Suleyman Demirel University Scientific Research Projects Coordination Unit.

Funding

The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: Research reported in this publication was supported by a grant from this work was supported by the Research Fund of Suleyman Demirel University. Suleyman Demirel University Faculty of Medicine (Ethics Committee No. 13–2/2019), and it was supported by the SDU Scientific Research Projects Unit with the project number TDK-2020–8034. The content is solely the responsibility of the authors and does not necessarily represent the official views of Suleyman Demirel University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emine Sarman.

Ethics declarations

Ethical Approval

In this study, an experimental animal (rat) was used. The necessary permissions were obtained from the Animal Experiments Local Ethics Committee of Suleyman Demirel University’s (SDU) Faculty of Medicine (Ethics Committee No. 13–2/2019).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is based on the first author’s doctoral thesis under the supervision of the second author.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sarman, E., Gulle, K. & Ilhan, I. Histochemical, Immunohistochemical, and Biochemical Investigation of the Effect of Resveratrol on Testicular Damage Caused by Methotrexate (MTX). Reprod. Sci. 30, 3315–3324 (2023). https://doi.org/10.1007/s43032-023-01269-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01269-x

Keywords

Navigation