Skip to main content

Advertisement

Log in

Integrative Analysis of Core Genes and Biological Process Involved in Polycystic Ovary Syndrome

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) is a common gynecological endocrine disordered disease, affecting the function of the ovaries in women of reproductive age. However, there are limited curative therapies for PCOS due to lack of reliable candidates. Hence, this study aimed to identify hub pathogenic genes and potential therapeutic targets for PCOS using bioinformatics tools. We obtained the expression profiles of 29 PCOS samples and 24 normal samples from three Gene Expression Omnibus (GEO) datasets. Then, the differentially expressed genes (DEGs) were screened, which were subjected to functional enrichment analyses. Moreover, we found 30 ferroptosis-related genes out of the 89 DEGs. Among the top 10 significant ferroptosis-related DEGs, 8 genes showed good predictive performance. We constructed interaction network of top three ferroptosis-related DEGs (SLC38A1, ACO1, DDIT3). Finally, real-time PCR was performed to test the relative expression of these genes. In conclusions, we have identified ferroptosis-related DEGs as core genes and potential therapeutic targets of PCOS based on comprehensive bioinformatics analysis. The findings are conducive to understanding of the pathogenesis of PCOS and paving the way towards curative therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Material

The datasets generated and/or analyzed during the current study are available from the Gene Expression Omnibus (GEO) datasets (http://www.ncbi.nlm.nih.gov/geo, Accession number GSE6798, GSE5850, and GSE10946).

References

  1. Han Q, Wang J, Li W, Chen ZJ, Du Y. Androgen-induced gut dysbiosis disrupts glucolipid metabolism and endocrinal functions in polycystic ovary syndrome. Microbiome. 2021;9(1):101.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol. 2021;17(9):521–33.

    PubMed  Google Scholar 

  3. Li J, Xie LM, Song JL, et al. Alterations of sphingolipid metabolism in different types of polycystic ovary syndrome. Sci Rep. 2019;9(1):3204.

    PubMed  PubMed Central  Google Scholar 

  4. Xie Q, Xiong X, Xiao N, et al. Mesenchymal stem cells alleviate DHEA-induced polycystic ovary syndrome (PCOS) by inhibiting inflammation in mice. Stem Cells Int. 2019;2019:9782373.

    PubMed  PubMed Central  Google Scholar 

  5. Zhao H, Gao Y, Chen Q, et al. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway. J Cell Mol Med. 2021;25(4):1927–38.

    CAS  PubMed  Google Scholar 

  6. Sun X, Liu Y, Gao X, et al. Analysis of LncRNA-mRNA co-expression profiles in patients with polycystic ovary syndrome: a pilot study. Front Immunol. 2021;12:669819.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Che Q, Liu M, Xu J, et al. Characterization of circular RNA expression profiles in cumulus cells from patients with polycystic ovary syndrome. Fertil Steril. 2019;111(6):1243–1251.e1241.

    CAS  PubMed  Google Scholar 

  8. Xie Y, Hou W, Song X, et al. Ferroptosis: process and function. Cell Death Differ. 2016;23(3):369–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Jiang X, Stockwell BR, Conrad M. Ferroptosis: mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 2021;22(4):266–82.

    PubMed  PubMed Central  Google Scholar 

  10. Zhang Y, Hu M, Jia W, et al. Hyperandrogenism and insulin resistance modulate gravid uterine and placental ferroptosis in PCOS-like rats. J Endocrinol. 2020;246(3):247–63.

    CAS  PubMed  Google Scholar 

  11. Ritchie ME, Phipson B, Wu D, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7):e47.

    PubMed  PubMed Central  Google Scholar 

  12. Subramanian A, Kuehn H, Gould J, Tamayo P, Mesirov JP. GSEA-P: a desktop application for gene set enrichment analysis. Bioinformatics. 2007;23(23):3251–3.

    CAS  PubMed  Google Scholar 

  13. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 2003;31(1):258–61.

    Google Scholar 

  14. Shannon P, Markiel A, Ozier O, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhou Y, Zhou B, Pache L, et al. Metascape provides a biologist-oriented resource for the analysis of systems-level datasets. Nat Commun. 2019;10(1):1523.

    PubMed  PubMed Central  Google Scholar 

  16. Walter W, Sánchez-Cabo F, Ricote M. GOplot: an R package for visually combining expression data with functional analysis. Bioinformatics. 2015;31(17):2912–4.

    CAS  PubMed  Google Scholar 

  17. Robin X, Turck N, Hainard A, et al. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC Bioinformatics. 2011;12:77.

    PubMed  PubMed Central  Google Scholar 

  18. Li T, Fan J, Wang B, et al. TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells. Cancer Res. 2017;77(21):e108–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Davis AP, Wiegers TC, Wiegers J, et al. CTD anatomy: analyzing chemical-induced phenotypes and exposures from an anatomical perspective, with implications for environmental health studies. Curr Res Toxicol. 2021;2:128–39.

    PubMed  PubMed Central  Google Scholar 

  20. Soifer HS, Rossi JJ, Saetrom P. MicroRNAs in disease and potential therapeutic applications. Mol Ther. 2007;15(12):2070–9.

    CAS  PubMed  Google Scholar 

  21. Baldwin AS Jr. Series introduction: the transcription factor NF-kappaB and human disease. J Clin Invest. 2001;107(1):3–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

    CAS  PubMed  Google Scholar 

  23. Han H, Cho JW, Lee S, et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res. 2018;46(D1):D380–d386.

    CAS  PubMed  Google Scholar 

  24. Jiao J, Sagnelli M, Shi B, et al. Genetic and epigenetic characteristics in ovarian tissues from polycystic ovary syndrome patients with irregular menstruation resemble those of ovarian cancer. BMC Endocr Disord. 2019;19(1):30.

    PubMed  PubMed Central  Google Scholar 

  25. Zou J, Li Y, Liao N, et al. Identification of key genes associated with polycystic ovary syndrome (PCOS) and ovarian cancer using an integrated bioinformatics analysis. J Ovarian Res. 2022;15(1):30.

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hong T, Lei G, Chen X, et al. PARP inhibition promotes ferroptosis via repressing SLC7A11 and synergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 2021;42:101928.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. You Y, Fan Q, Huang J, Wu Y, Lin H, Zhang Q. Ferroptosis-related gene signature promotes ovarian cancer by influencing immune infiltration and invasion. J Oncol. 2021;2021:9915312.

    PubMed  PubMed Central  Google Scholar 

  28. Tysoe O. Licogliflozin effective in PCOS treatment. Nat Rev Endocrinol. 2021;17(10):577.

    PubMed  Google Scholar 

  29. Mills G, Badeghiesh A, Suarthana E, Baghlaf H, Dahan MH. Polycystic ovary syndrome as an independent risk factor for gestational diabetes and hypertensive disorders of pregnancy: a population-based study on 9.1 million pregnancies. Hum Reprod. 2020;35(7):1666–74.

    PubMed  Google Scholar 

  30. Maliqueo M, Lara HE, Sánchez F, Echiburú B, Crisosto N, Sir-Petermann T. Placental steroidogenesis in pregnant women with polycystic ovary syndrome. Eur J Obstet Gynecol Reprod Biol. 2013;166(2):151–5.

    CAS  PubMed  Google Scholar 

  31. Maliqueo M, Sundström Poromaa I, Vanky E, et al. Placental STAT3 signaling is activated in women with polycystic ovary syndrome. Hum Reprod. 2015;30(3):692–700.

    CAS  PubMed  Google Scholar 

  32. Rubin KH, Glintborg D, Nybo M, Abrahamsen B, Andersen M. Development and risk factors of type 2 diabetes in a nationwide population of women with polycystic ovary syndrome. J Clin Endocrinol Metab. 2017;102(10):3848–57.

    PubMed  Google Scholar 

  33. Gunning MN, Sir Petermann T, Crisosto N, et al. Cardiometabolic health in offspring of women with PCOS compared to healthy controls: a systematic review and individual participant data meta-analysis. Hum Reprod Update. 2020;26(1):103–17.

    PubMed  Google Scholar 

  34. Yin W, Falconer H, Yin L, Xu L, Ye W. Association between polycystic ovary syndrome and cancer risk. JAMA Oncol. 2019;5(1):106–7.

    PubMed  Google Scholar 

  35. Conrad M, Angeli JP, Vandenabeele P, Stockwell BR. Regulated necrosis: disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 2016;15(5):348–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Yan HF, Zou T, Tuo QZ, et al. Ferroptosis: mechanisms and links with diseases. Signal Transduct Target Ther. 2021;6(1):49.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Yuan ZH, Liu T, Wang H, Xue LX, Wang JJ. Fatty acids metabolism: the bridge between ferroptosis and ionizing radiation. Front Cell Dev Biol. 2021;9:675617.

    PubMed  PubMed Central  Google Scholar 

  38. Qureshi T, Sørensen C, Berghuis P, et al. The glutamine transporter Slc38a1 regulates GABAergic neurotransmission and synaptic plasticity. Cereb Cortex. 2019;29(12):5166–79.

    PubMed  PubMed Central  Google Scholar 

  39. Bröer S. The SLC38 family of sodium-amino acid co-transporters. Pflugers Arch. 2014;466(1):155–72.

    PubMed  Google Scholar 

  40. Gu L, Liu H, Gu X, Boots C, Moley KH, Wang Q. Metabolic control of oocyte development: linking maternal nutrition and reproductive outcomes. Cell Mol Life Sci. 2015;72(2):251–71.

    CAS  PubMed  Google Scholar 

  41. Pelland AM, Corbett HE, Baltz JM. Amino acid transport mechanisms in mouse oocytes during growth and meiotic maturation. Biol Reprod. 2009;81(6):1041–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Downs SM, Hudson ED. Energy substrates and the completion of spontaneous meiotic maturation. Zygote. 2000;8(4):339–51.

    CAS  PubMed  Google Scholar 

  43. Farooq MA, Pracheil TM, Dong Z, Xiao F, Liu Z. Mitochondrial DNA instability in cells lacking aconitase correlates with iron citrate toxicity. Oxid Med Cell Longev. 2013;2013:493536.

    PubMed  PubMed Central  Google Scholar 

  44. Min Z, Long X, Zhao H, et al. Protein lysine acetylation in ovarian granulosa cells affects metabolic homeostasis and clinical presentations of women with polycystic ovary syndrome. Front Cell Dev Biol. 2020;8:567028.

    PubMed  PubMed Central  Google Scholar 

  45. Min Z, Gao Q, Zhen X, et al. New insights into the genic and metabolic characteristics of induced pluripotent stem cells from polycystic ovary syndrome women. Stem Cell Res Ther. 2018;9(1):210.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Sun L, Hu W, Liu Q, et al. Metabonomics reveals plasma metabolic changes and inflammatory marker in polycystic ovary syndrome patients. J Proteome Res. 2012;11(5):2937–46.

    CAS  PubMed  Google Scholar 

  47. Li M, Thorne RF, Shi R, et al. DDIT3 directs a dual mechanism to balance glycolysis and oxidative phosphorylation during glutamine deprivation. Adv Sci (Weinh). 2021;8(11):e2003732.

    PubMed  Google Scholar 

  48. Song B, Scheuner D, Ron D, Pennathur S, Kaufman RJ. Chop deletion reduces oxidative stress, improves beta cell function, and promotes cell survival in multiple mouse models of diabetes. J Clin Invest. 2008;118(10):3378–89.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Yong J, Parekh VS, Reilly SM, et al. Chop/Ddit3 depletion in β cells alleviates ER stress and corrects hepatic steatosis in mice. Sci Transl Med. 2021;13(604)

Download references

Funding

This work was supported by the Shaanxi Administration of Traditional Chinese Medicine (Grant No. 2021-ZZ-LC023), the Education Department of Shaanxi Provincial Government (Grant No. 21JK0974), the Yan'an University Affiliated Hospital of Project (Grant No. 2018ZD-02), and Yan’an Science and Technology Bureau (Grant No. 2022SLSFGG-047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Xue.

Ethics declarations

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. The study was approved by the Bioethics Committee of the Medical University of Affiliated Hospital of Yan’an University (No. YAS-N01-202103009).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Table S1. Primer sets for SLC38A1, ATG13, and GAPDH in RT-PCR

ESM 2

Table S2. GSEA analysis on the gene expression data of the GSE6798 dataset

ESM 3

Table S3. Go enrichment analysis of DEGs in PCOS

ESM 4

Table S4. The interactions between SLC38A1, ACO1, DDIT3 and drug molecules.

ESM 5

Figure S1 The results of agarose gel electrophoresis.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Zhao, T., Hu, L. et al. Integrative Analysis of Core Genes and Biological Process Involved in Polycystic Ovary Syndrome. Reprod. Sci. 30, 3055–3070 (2023). https://doi.org/10.1007/s43032-023-01259-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01259-z

Keywords

Navigation