Skip to main content

Advertisement

Log in

N6‐methyladenosine (m6A) Modification in Preeclampsia

  • Pregnancy: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Recently, epitranscriptional modification of N6-methyladenosine (m6A) has received growing attention in the research on the pathogenesis of preeclampsia. Advances in m6A sequencing have revealed the molecular mechanism and importance of m6A modification. In addition, epitranscriptional modification of m6A is closely related to the metabolic processes of placental tissues and cells in preeclampsia. This article reviews the composition, mode of action, and bioinformatics analysis of m6A modification-related proteins, and their biological function in the progression of preeclampsia. The relationship between m6A modification and preeclampsia risk factors, such as diabetes, cardiovascular disease, obesity, and psychological stress, is summarized to provide new ideas for studying PE-targeting molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References  

  1. Abalos E, Cuesta C, Grosso AL, Chou D, Say L. Global and regional estimates of preeclampsia and eclampsia: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2013;170:1–7.

    PubMed  Google Scholar 

  2. Opichka MA, Rappelt MW, Gutterman DD, Grobe JL, McIntosh JJ. Vascular dysfunction in preeclampsia. Cells. 2021;10(11):3055.

  3. Poon LC, Shennan A, Hyett JA, Kapur A, Hadar E, Divakar H, McAuliffe F, Da SCF, von Dadelszen P, McIntyre HD, Kihara AB, Di Renzo GC, Romero R, D’Alton M, Berghella V, Nicolaides KH, Hod M. The International Federation of Gynecology and Obstetrics (FIGO) initiative on pre-eclampsia: A pragmatic guide for first-trimester screening and prevention. Int J Gynaecol Obstet. 2019;145(Suppl 1):1–33.

    PubMed  PubMed Central  Google Scholar 

  4. Phipps EA, Thadhani R, Benzing T, Karumanchi SA. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. Nat Rev Nephrol. 2019;15:275–89.

    PubMed  PubMed Central  Google Scholar 

  5. Boccaletto P, Machnicka MA, Purta E, Piatkowski P, Baginski B, Wirecki TK, de Crecy-Lagard V, Ross R, Limbach PA, Kotter A, Helm M, Bujnicki JM. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46:D303–7.

    CAS  PubMed  Google Scholar 

  6. Jia G, Fu Y, Zhao X, Dai Q, Zheng G, Yang Y, Yi C, Lindahl T, Pan T, Yang YG, He C. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat Chem Biol. 2011;7:885–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Dominissini D, Moshitch-Moshkovitz S, Schwartz S, Salmon-Divon M, Ungar L, Osenberg S, Cesarkas K, Jacob-Hirsch J, Amariglio N, Kupiec M, Sorek R, Rechavi G. Topology of the human and mouse m6A RNA methylomes revealed by m6A-seq. Nature. 2012;485:201–6.

    CAS  PubMed  Google Scholar 

  8. Han J, Wang JZ, Yang X, Yu H, Zhou R, Lu HC, Yuan WB, Lu JC, Zhou ZJ, Lu Q, Wei JF, Yang H. METTL3 promote tumor proliferation of bladder cancer by accelerating pri-miR221/222 maturation in m6A-dependent manner. Mol Cancer. 2019;18:110.

    PubMed  PubMed Central  Google Scholar 

  9. Li Z, Peng Y, Li J, Chen Z, Chen F, Tu J, Lin S, Wang H. N (6)-methyladenosine regulates glycolysis of cancer cells through PDK4. Nat Commun. 2020;11:2578.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Li Q, Ni Y, Zhang L, Jiang R, Xu J, Yang H, Hu Y, Qiu J, Pu L, Tang J, Wang X. HIF-1alpha-induced expression of m6A reader YTHDF1 drives hypoxia-induced autophagy and malignancy of hepatocellular carcinoma by promoting ATG2A and ATG14 translation. Signal Transduct Target Ther. 2021;6:76.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao F, Xu Y, Gao S, Qin L, Austria Q, Siedlak SL, Pajdzik K, Dai Q, He C, Wang W, O’Donnell JM, Tang B, Zhu X. METTL3-dependent RNA m (6)A dysregulation contributes to neurodegeneration in Alzheimer’s disease through aberrant cell cycle events. Mol Neurodegener. 2021;16:70.

    PubMed  PubMed Central  Google Scholar 

  12. Wang X, Lu Z, Gomez A, Hon GC, Yue Y, Han D, Fu Y, Parisien M, Dai Q, Jia G, Ren B, Pan T, He C. N6-methyladenosine-dependent regulation of messenger RNA stability. Nature. 2014;505:117–20.

    PubMed  Google Scholar 

  13. Liu N, Dai Q, Zheng G, He C, Parisien M, Pan T. N (6)-methyladenosine-dependent RNA structural switches regulate RNA-protein interactions. Nature. 2015;518:560–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Wang X, Zhao BS, Roundtree IA, Lu Z, Han D, Ma H, Weng X, Chen K, Shi H, He C. N(6)-methyladenosine Modulates Messenger RNA Translation Efficiency. Cell. 2015;161:1388–99.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang Y, Kang M, Zhang B, Meng F, Song J, Kaneko H, Shimamoto F, Tang B. m(6)A modification-mediated CBX8 induction regulates stemness and chemosensitivity of colon cancer via upregulation of LGR5. Mol Cancer. 2019;18:185.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Liu Z, Wang T, She Y, Wu K, Gu S, Li L, Dong C, Chen C, Zhou Y. N (6)-methyladenosine-modified circIGF2BP3 inhibits CD8(+) T-cell responses to facilitate tumor immune evasion by promoting the deubiquitination of PD-L1 in non-small cell lung cancer. Mol Cancer. 2021;20:105.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Kumari N, Karmakar A, Ahamad KM, Ganesan SK. The potential role of m6A RNA methylation in diabetic retinopathy. Exp Eye Res. 2021;208:108616.

    CAS  PubMed  Google Scholar 

  18. Li X, Xiong W, Long X, Dai X, Peng Y, Xu Y, Zhang Z, Zhang L, Liu Y. Inhibition of METTL3/m6A/miR126 promotes the migration and invasion of endometrial stromal cells in endometriosisdagger. Biol Reprod. 2021;105:1221–33.

    PubMed  PubMed Central  Google Scholar 

  19. Bokar JA, Shambaugh ME, Polayes D, Matera AG, Rottman FM. Purification and cDNA cloning of the AdoMet-binding subunit of the human mRNA (N6-adenosine)-methyltransferase. RNA. 1997;3:1233–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Liu J, Yue Y, Han D, Wang X, Fu Y, Zhang L, Jia G, Yu M, Lu Z, Deng X, Dai Q, Chen W, He C. A METTL3-METTL14 complex mediates mammalian nuclear RNA N6-adenosine methylation. Nat Chem Biol. 2014;10:93–5.

    CAS  PubMed  Google Scholar 

  21. Agarwala SD, Blitzblau HG, Hochwagen A, Fink GR. RNA methylation by the MIS complex regulates a cell fate decision in yeast. PLoS Genet. 2012;8:e1002732.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Pendleton KE, Chen B, Liu K, Hunter OV, Xie Y, Tu BP, Conrad NK. The U6 snRNA m(6)A Methyltransferase METTL16 Regulates SAM Synthetase Intron Retention. Cell. 2017;169:824–35.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zheng G, Dahl JA, Niu Y, Fedorcsak P, Huang CM, Li CJ, Vagbo CB, Shi Y, Wang WL, Song SH, Lu Z, Bosmans RP, Dai Q, Hao YJ, Yang X, Zhao WM, Tong WM, Wang XJ, Bogdan F, Furu K, Fu Y, Jia G, Zhao X, Liu J, Krokan HE, Klungland A, Yang YG, He C. ALKBH5 is a mammalian RNA demethylase that impacts RNA metabolism and mouse fertility. Mol Cell. 2013;49:18–29.

    CAS  PubMed  Google Scholar 

  24. Zhao X, Yang Y, Sun BF, Shi Y, Yang X, Xiao W, Hao YJ, Ping XL, Chen YS, Wang WJ, Jin KX, Wang X, Huang CM, Fu Y, Ge XM, Song SH, Jeong HS, Yanagisawa H, Niu Y, Jia GF, Wu W, Tong WM, Okamoto A, He C, Rendtlew DJ, Wang XJ, Yang YG. FTO-dependent demethylation of N6-methyladenosine regulates mRNA splicing and is required for adipogenesis. Cell Res. 2014;24:1403–19.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Liu H, Wang H, Wei Z, Zhang S, Hua G, Zhang SW, Zhang L, Gao SJ, Meng J, Chen X, Huang Y. MeT-DB V2.0: elucidating context-specific functions of N6-methyl-adenosine methyltranscriptome. Nucleic Acids Res. 2018;46:D281–7.

    CAS  PubMed  Google Scholar 

  26. Liu Q, Gregory RI. RNAmod: an integrated system for the annotation of mRNA modifications. Nucleic Acids Res. 2019;47:W548–55.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Xuan JJ, Sun WJ, Lin PH, Zhou KR, Liu S, Zheng LL, Qu LH, Yang JH. RMBase v2.0: deciphering the map of RNA modifications from epitranscriptome sequencing data. Nucleic Acids Res. 2018;46:D327–34.

    CAS  PubMed  Google Scholar 

  28. Zheng Y, Nie P, Peng D, He Z, Liu M, Xie Y, Miao Y, Zuo Z, Ren J. m6AVar: a database of functional variants involved in m6A modification. Nucleic Acids Res. 2018;46:D139–45.

    CAS  PubMed  Google Scholar 

  29. Tang Y, Chen K, Song B, Ma J, Wu X, Xu Q, Wei Z, Su J, Liu G, Rong R, Lu Z, de Magalhaes JP, Rigden DJ, Meng J. m6A-Atlas: a comprehensive knowledgebase for unraveling the N6-methyladenosine (m6A) epitranscriptome. Nucleic Acids Res. 2021;49:D134–43.

    CAS  PubMed  Google Scholar 

  30. Zhou Y, Zeng P, Li YH, Zhang Z, Cui Q. SRAMP: prediction of mammalian N6-methyladenosine (m6A) sites based on sequence-derived features. Nucleic Acids Res. 2016;44:e91.

    PubMed  PubMed Central  Google Scholar 

  31. Chen K, Wei Z, Zhang Q, Wu X, Rong R, Lu Z, Su J, de Magalhaes JP, Rigden DJ, Meng J. WHISTLE: a high-accuracy map of the human N6-methyladenosine (m6A) epitranscriptome predicted using a machine learning approach. Nucleic Acids Res. 2019;47:e41.

    PubMed  PubMed Central  Google Scholar 

  32. Deng S, Zhang H, Zhu K, Li X, Ye Y, Li R, Liu X, Lin D, Zuo Z, Zheng J. M6A2Target: a comprehensive database for targets of m6A writers, erasers and readers. Brief Bioinformatics. 2021;22(3):bbaa055.

  33. Li JH, Liu S, Zhou H, Qu LH, Yang JH. starBase v2.0: decoding miRNA-ceRNA, miRNA-ncRNA and protein-RNA interaction networks from large-scale CLIP-Seq data. Nucleic Acids Res. 2014;42:D92–7.

    CAS  PubMed  Google Scholar 

  34. Zhang Q, Wang Z, Cheng X, Wu H. lncRNA DANCR promotes the migration an invasion and of trophoblast cells through microRNA-214-5p in preeclampsia. Bioengineered. 2021;12:9424–34.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhang Y, Yang H, Long Y, Zhang Y, Chen R, Shi J, Chen J. circRNA N6-methyladenosine methylation in preeclampsia and the potential role of N6-methyladenosine-modified circPAPPA2 in trophoblast invasion. Sci Rep. 2021;11:24357.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Fan W, Zhou W, Yan Q, Peng Y, Wang H, Kong C, Zhang B, Yu B, Chen L, Xue P. Upregulation of METTL14 contributes to trophoblast dysfunction by elevating FOXO3a expression in an m (6)A-dependent manner. Placenta. 2022;124:18–27.

    CAS  PubMed  Google Scholar 

  37. Jacobo-Baca G, Salazar-Ybarra RA, Torres-de-la-Cruz V, Guzman-Lopez S, Elizondo-Omana RE, Guzman-Lopez A, Vazquez-Barragan MA, Martinez-de-Villarreal LE. Proteomic profile of preeclampsia in the first trimester of pregnancy. J Matern Fetal Neonatal Med. 2022;35:3446–52.

    CAS  PubMed  Google Scholar 

  38. Gu Y, Chu X, Morgan JA, Lewis DF, Wang Y. Upregulation of METTL3 expression and m6A RNA methylation in placental trophoblasts in preeclampsia. Placenta. 2021;103:43–9.

    CAS  PubMed  Google Scholar 

  39. Guo Y, Song W, Yang Y. Inhibition of ALKBH5-mediated m (6) A modification of PPARG mRNA alleviates H/R-induced oxidative stress and apoptosis in placenta trophoblast. Environ Toxicol. 2022;37:910–24.

    CAS  PubMed  Google Scholar 

  40. Li XC, Jin F, Wang BY, Yin XJ, Hong W, Tian FJ. The m6A demethylase ALKBH5 controls trophoblast invasion at the maternal-fetal interface by regulating the stability of CYR61 mRNA. Theranostics. 2019;9:3853–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. He J, Li X, Lu M, Wang J, Tang J, Luo S, Qian Y. ALKBH5 suppresses migration and invasion of human trophoblast cells by inhibiting epithelial-mesenchymal transition. Nan Fang Yi Ke Da Xue Xue Bao. 2020;40:1720–5.

    CAS  PubMed  Google Scholar 

  42. Zheng Q, Yang F, Gan H, Jin L. Hypoxia induced ALKBH5 prevents spontaneous abortion by mediating m (6)A-demethylation of SMAD1/5 mRNAs. Biochim Biophys Acta Mol Cell Res. 2022;1869: 119316.

    CAS  PubMed  Google Scholar 

  43. Klemetti M, Hiltunen LM, Heino S, Heinonen S, Kajantie E, Laivuori H. An obesity-related FTO variant and the risk of preeclampsia in a Finnish study population. J Pregnancy. 2011;2011:251470.

    PubMed  PubMed Central  Google Scholar 

  44. Guo L, Liu Y, Guo Y, Yang Y, Chen B. MicroRNA-423-5p inhibits the progression of trophoblast cells via targeting IGF2BP1. Placenta. 2018;74:1–8.

    CAS  PubMed  Google Scholar 

  45. Wu L, Song WY, Xie Y, Hu LL, Hou XM, Wang R, Gao Y, Zhang JN, Zhang L, Li WW, Zhu C, Gao ZY, Sun YP. miR-181a-5p suppresses invasion and migration of HTR-8/SVneo cells by directly targeting IGF2BP2. Cell Death Dis. 2018;9:16.

    PubMed  PubMed Central  Google Scholar 

  46. Yang Q, Ma Y, Liu Y, Shao X, Jia W, Yu X, Li YX, Yang L, Gu W, Wang H, Wang J, Wang YL. MNSFbeta regulates placental development by conjugating IGF2BP2 to enhance trophoblast cell invasiveness. Cell Prolif. 2021;54:e13145.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. Li H, Ouyang Y, Sadovsky E, Parks WT, Chu T, Sadovsky Y. Unique microRNA Signals in plasma exosomes from pregnancies complicated by preeclampsia. Hypertension. 2020;75:762–71.

    CAS  PubMed  Google Scholar 

  48. Zhang H, He Y, Wang JX, Chen MH, Xu JJ, Jiang MH, Feng YL, Gu YF. miR-30-5p-mediated ferroptosis of trophoblasts is implicated in the pathogenesis of preeclampsia. Redox Biol. 2020;29:101402.

    CAS  PubMed  Google Scholar 

  49. Lv Y, Lu C, Ji X, Miao Z, Long W, Ding H, Lv M. Roles of microRNAs in preeclampsia. J Cell Physiol. 2019;234:1052–61.

    CAS  PubMed  Google Scholar 

  50. Sun N, Qin S, Zhang L, Liu S. Roles of noncoding RNAs in preeclampsia. Reprod Biol Endocrinol. 2021;19:100.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen A, Yu R, Jiang S, Xia Y, Chen Y. Recent advances of microRNAs, long non-coding RNAs, and circular RNAs in preeclampsia. Front Physiol. 2021;12:659638.

    PubMed  PubMed Central  Google Scholar 

  52. Wang D, Guan H, Xia Y. YTHDC1 maintains trophoblasts function by promoting degradation of m6A-modified circMPP1. Biochem Pharmacol. 2023;210:115456.

    CAS  PubMed  Google Scholar 

  53. Li W, Liu D, Chang W, Lu X, Wang YL, Wang H, Zhu C, Lin HY, Zhang Y, Zhou J, Wang H. Role of IGF2BP3 in trophoblast cell invasion and migration. Cell Death Dis. 2014;5:e1025.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Shi H, Wang X, Lu Z, Zhao BS, Ma H, Hsu PJ, Liu C, He C. YTHDF3 facilitates translation and decay of N (6)-methyladenosine-modified RNA. Cell Res. 2017;27:315–28.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Chang G, Shi L, Ye Y, Shi H, Zeng L, Tiwary S, Huse JT, Huo L, Ma L, Ma Y, Zhang S, Zhu J, Xie V, Li P, Han L, He C, Huang S. YTHDF3 Induces the Translation of m (6)A-enriched gene transcripts to promote breast cancer brain metastasis. Cancer Cell. 2020;38:857–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Zheng Q, Gan H, Yang F, Yao Y, Hao F, Hong L, Jin L. Cytoplasmic m (1)A reader YTHDF3 inhibits trophoblast invasion by downregulation of m (1)A-methylated IGF1R. Cell Discovery. 2020;6:12.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang Y, Le Ray I, Zhu J, Zhang J, Hua J, Reilly M. Preeclampsia prevalence, risk factors, and pregnancy outcomes in Sweden and China. JAMA Netw Open. 2021;4:e218401.

    PubMed  PubMed Central  Google Scholar 

  58. Melchiorre K, Giorgione V, Thilaganathan B. The placenta and preeclampsia: villain or victim? Am J Obstet Gynecol. 2022;226:S954–62.

    CAS  PubMed  Google Scholar 

  59. Bartsch E, Medcalf KE, Park AL, Ray JG. Clinical risk factors for pre-eclampsia determined in early pregnancy: systematic review and meta-analysis of large cohort studies. BMJ. 2016;353:i1753.

    PubMed  PubMed Central  Google Scholar 

  60. Staff AC, Fjeldstad HE, Fosheim IK, Moe K, Turowski G, Johnsen GM, Alnaes-Katjavivi P, Sugulle M. Failure of physiological transformation and spiral artery atherosis: their roles in preeclampsia. Am J Obstet Gynecol. 2022;226:S895–906.

    CAS  PubMed  Google Scholar 

  61. Chen J, Ning Y, Zhang H, Song N, Gu Y, Shi Y, Cai J, Ding X, Zhang X. METTL14-dependent m6A regulates vascular calcification induced by indoxyl sulfate. Life Sci. 2019;239:117034.

    CAS  PubMed  Google Scholar 

  62. Mo XB, Lei SF, Zhang YH, Zhang H. Examination of the associations between m (6)A-associated single-nucleotide polymorphisms and blood pressure. Hypertens Res. 2019;42:1582–9.

    CAS  PubMed  Google Scholar 

  63. Yang Y, Shen F, Huang W, Qin S, Huang JT, Sergi C, Yuan BF, Liu SM. Glucose is involved in the dynamic regulation of m6A in patients with type 2 diabetes. J Clin Endocrinol Metab. 2019;104:665–73.

    PubMed  Google Scholar 

  64. Wang J, Wang K, Liu W, Cai Y, Jin H. m6A mRNA methylation regulates the development of gestational diabetes mellitus in Han Chinese women. Genomics. 2021;113:1048–56.

    CAS  PubMed  Google Scholar 

  65. Du R, Bai Y, Li L. Biological networks in gestational diabetes mellitus: insights into the mechanism of crosstalk between long non-coding RNA and N (6)-methyladenine modification. BMC Pregnancy Childbirth. 2022;22:384.

    PubMed  PubMed Central  Google Scholar 

  66. Spradley FT. Metabolic abnormalities and obesity’s impact on the risk for developing preeclampsia. Am J Physiol Regul Integr Comp Physiol. 2017;312:R5–12.

    PubMed  Google Scholar 

  67. Shen WB, Ni J, Yao R, Goetzinger KR, Harman C, Reece EA, Wang B, Yang P. Maternal obesity increases DNA methylation and decreases RNA methylation in the human placenta. Reprod Toxicol. 2022;107:90–6.

    CAS  PubMed  Google Scholar 

  68. Bilbul M, Caccese C, Horsley K, Gauvreau A, Gavanski I, Montreuil T, Konci R, Lai JK, Da CD, Zelkowitz P, Shen HC, Gryte KR, Larosa A, Brown RN, Suarthana E, Nguyen TV. Maternal anxiety, depression and vascular function during pregnancy. J Psychosom Res. 2022;154:110722.

    PubMed  Google Scholar 

  69. Wang Q, Pan M, Zhang T, Jiang Y, Zhao P, Liu X, Gao A, Yang L, Hou J. Fear stress during pregnancy affects placental m6a-modifying enzyme expression and epigenetic modification levels. Front Genet. 2022;13:927615.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all authors for their contributions. All figures were created with BioRender.com

Author information

Authors and Affiliations

Authors

Contributions

All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

Corresponding author

Correspondence to Lizhou Sun.

Ethics declarations

Ethical Approval

The study was granted an exemption from the local institutional review board.

Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, T., Jiang, Z., Yang, N. et al. N6‐methyladenosine (m6A) Modification in Preeclampsia. Reprod. Sci. 30, 3144–3152 (2023). https://doi.org/10.1007/s43032-023-01250-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01250-8

Keywords

Navigation