Skip to main content
Log in

Determinants of Embryo Implantation: Roles of the Endometrium and Embryo in Implantation Success

  • Infertility: Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Both uterine endometrium and embryo contribute to implantation success. However, their relative role in the implantation success is still a matter for debate, as are the roles of endometrial receptivity analysis (ERA), endometrial scratch (ES), endometrial microbiome, and intrauterine or intravenous measures that are currently advocated to improve the implantation success. There is insufficient evidence to suggest that the endometrium is more important than the embryo in determining the implantation success and the utility of these measures, especially when euploid embryos are transferred is limited. Although embryo implantation on epithelium other than the endometrium is a very rare event, evidence suggests that embryo implantation and growth is not limited to the endometrium alone. Embryos can implant and develop to result in livebirths on epithelium that lacks the typical endometrial development present at implantation. Currently, the role of embryo euploidy in implantation success is underappreciated. At a minimum, it is the author’s opinion that until robust, definitive studies are conducted that demonstrate benefit, reproductive endocrinologists and infertility specialist should be prudent in the way they counsel patients about the utility of ERA, ES, and other measures in improving implantation success.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Mascarenhas MN, et al. National, regional, and global trends in infertility prevalence since 1990: a systematic analysis of 277 health surveys. PLoS Med. 2012;9(12): e1001356.

    PubMed  PubMed Central  Google Scholar 

  2. Khan SN, et al. Diffused intra-oocyte hydrogen peroxide activates myeloperoxidase and deteriorates oocyte quality. PLoS One. 2015;10(7): e0132388.

    PubMed  PubMed Central  Google Scholar 

  3. Xie Y, et al. Transient stress and stress enzyme responses have practical impacts on parameters of embryo development, from IVF to directed differentiation of stem cells. Mol Reprod Dev. 2008;75(4):689–97.

    CAS  PubMed  Google Scholar 

  4. Liu H, et al. Epigenetic modifications working in the decidualization and endometrial receptivity. Cell Mol Life Sci. 2020;77(11):2091–101.

    CAS  PubMed  Google Scholar 

  5. Liu KE, Hartman M, Hartman A. Management of thin endometrium in assisted reproduction: a clinical practice guideline from the Canadian Fertility and Andrology Society. Reprod Biomed Online. 2019;39(1):49–62.

    PubMed  Google Scholar 

  6. Nikas G, Aghajanova L. Endometrial pinopodes: some more understanding on human implantation? Reprod Biomed Online. 2002;4(Suppl 3):18–23.

    PubMed  Google Scholar 

  7. Boomsma CM, et al. Endometrial secretion analysis identifies a cytokine profile predictive of pregnancy in IVF. Hum Reprod. 2009;24(6):1427–35.

    CAS  PubMed  Google Scholar 

  8. Klimczak AM, et al. B-cell lymphoma 6 expression is not associated with live birth in a normal responder in vitro fertilization population. Fertil Steril. 2022;117(2):351–8.

    CAS  PubMed  Google Scholar 

  9. Mansouri-Attia N, et al. Endometrium as an early sensor of in vitro embryo manipulation technologies. Proc Natl Acad Sci USA. 2009;106(14):5687–92.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brosens JJ, et al. Uterine selection of human embryos at implantation. Sci Rep. 2014;4:3894.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Young SL, et al. Effect of randomized serum progesterone concentration on secretory endometrial histologic development and gene expression. Hum Reprod. 2017;32(9):1903–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Maclean A, et al. Fallopian tube epithelial cells express androgen receptor and have a distinct hormonal responsiveness when compared with endometrial epithelium. Hum Reprod. 2020;35(9):2097–106.

    CAS  PubMed  Google Scholar 

  13. Papacleovoulou G, et al. Regulation of 3beta-hydroxysteroid dehydrogenase type 1 and type 2 gene expression and function in the human ovarian surface epithelium by cytokines. Mol Hum Reprod. 2009;15(6):379–92.

    CAS  PubMed  Google Scholar 

  14. Ikechebelu JI, Onwusulu DN, Chukwugbo CN. Term abdominal pregnancy misdiagnosed as abruptio placenta. Niger J Clin Pract. 2005;8(1):43–5.

    CAS  PubMed  Google Scholar 

  15. Nassali MN, et al. A case report of an asymptomatic late term abdominal pregnancy with a live birth at 41 weeks of gestation. BMC Res Notes. 2016;9:31.

    PubMed  PubMed Central  Google Scholar 

  16. Siati A, et al. Abdominal pregnancy with a healthy newborn: a new case. Pan Afr Med J. 2019;34:35.

    PubMed  PubMed Central  Google Scholar 

  17. Puscheck EE, et al. Molecular biology of the stress response in the early embryo and its stem cells. Adv Exp Med Biol. 2015;843:77–128.

    CAS  PubMed  Google Scholar 

  18. Xie Y, et al. Hypoxic stress induces, but cannot sustain trophoblast stem cell differentiation to labyrinthine placenta due to mitochondrial insufficiency. Stem Cell Res. 2014;13(3 Pt A):478–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Yang Y, et al. Hypoxic stress forces adaptive and maladaptive placental stress responses in early pregnancy. Birth Defects Res. 2017;109(17):1330–44.

    CAS  PubMed  Google Scholar 

  20. Yang Y, et al. Blastocyst-derived stem cell populations under stress: impact of nutrition and metabolism on stem cell potency loss and miscarriage. Stem Cell Rev Rep. 2017;13(4):454–64.

    CAS  PubMed  Google Scholar 

  21. Scott R 3rd, Zhang M, Seli E. Metabolism of the oocyte and the preimplantation embryo: implications for assisted reproduction. Curr Opin Obstet Gynecol. 2018;30(3):163–170.

  22. Gurner KH, et al. A microenvironment of high lactate and low pH created by the blastocyst promotes endometrial receptivity and implantation. Reprod Biomed Online. 2022;44(1):14–26.

    CAS  PubMed  Google Scholar 

  23. Lucas ES, Salker MS, Brosens JJ. Uterine plasticity and reproductive fitness. Reprod Biomed Online. 2013;27(5):506–14.

    PubMed  Google Scholar 

  24. Almquist LD, et al. Endometrial BCL6 testing for the prediction of in vitro fertilization outcomes: a cohort study. Fertil Steril. 2017;108(6):1063–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Likes CE, et al. Medical or surgical treatment before embryo transfer improves outcomes in women with abnormal endometrial BCL6 expression. J Assist Reprod Genet. 2019;36(3):483–90.

    PubMed  PubMed Central  Google Scholar 

  26. Starks G. Tubal conservation with ectopic gestations. A reappraisal. Am Surg. 1984;50(4):222–4.

    CAS  PubMed  Google Scholar 

  27. Pavlova GA. Tubal muscles determine embryo implantation site; prognosis of ectopic pregnancy at chronic functional disorders. Med Hypotheses. 2019;132: 109332.

    PubMed  Google Scholar 

  28. Jiang H, Li JX. Interaction networks between the fallopian tubes and the embryo in human tubal pregnancy: current knowledge and perspectives. J Obstet Gynaecol Res. 2021;47(12):4139–47.

    PubMed  Google Scholar 

  29. Elito J Jr, Han KK, Camano L. Tubal patency after clinical treatment of unruptured ectopic pregnancy. Int J Gynaecol Obstet. 2005;88(3):309–13.

  30. Morrison JL. Sheep models of intrauterine growth restriction: fetal adaptations and consequences. Clin Exp Pharmacol Physiol. 2008;35(7):730–43.

    CAS  PubMed  Google Scholar 

  31. Chen W, Itoyama T, Chaganti RS. Splicing factor SRP20 is a novel partner of BCL6 in a t(3;6)(q27;p21) translocation in transformed follicular lymphoma. Genes Chromosomes Cancer. 2001;32(3):281–4.

    CAS  PubMed  Google Scholar 

  32. Evans-Hoeker E, et al. Endometrial BCL6 overexpression in eutopic endometrium of women with endometriosis. Reprod Sci. 2016;23(9):1234–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Yoo JY, et al. KRAS Activation and over-expression of SIRT1/BCL6 contributes to the pathogenesis of endometriosis and progesterone resistance. Sci Rep. 2017;7(1):6765.

    PubMed  PubMed Central  Google Scholar 

  34. Díaz-Gimeno P, et al. A genomic diagnostic tool for human endometrial receptivity based on the transcriptomic signature. Fertil Steril. 2011;95(1):50–60, 60.e1–15.

  35. Navot D, et al. The window of embryo transfer and the efficiency of human conception in vitro. Fertil Steril. 1991;55(1):114–8.

    CAS  PubMed  Google Scholar 

  36. Wilcox AJ, Baird DD, Weinberg CR. Time of implantation of the conceptus and loss of pregnancy. N Engl J Med. 1999;340(23):1796–9.

    CAS  PubMed  Google Scholar 

  37. Genbacev OD, et al. Trophoblast L-selectin-mediated adhesion at the maternal-fetal interface. Science. 2003;299(5605):405–8.

    CAS  PubMed  Google Scholar 

  38. Ruiz-Alonso M, et al. The endometrial receptivity array for diagnosis and personalized embryo transfer as a treatment for patients with repeated implantation failure. Fertil Steril. 2013;100(3):818–24.

    PubMed  Google Scholar 

  39. Arian SE, et al. Endometrial receptivity array before frozen embryo transfer cycles: a systematic review and meta-analysis. Fertil Steril. 2023;119(2):229–38.

  40. Ding J, et al. Trophoblast-derived IL-6 serves as an important factor for normal pregnancy by activating Stat3-mediated M2 macrophages polarization. Int Immunopharmacol. 2021;90: 106788.

    CAS  PubMed  Google Scholar 

  41. Rőszer T. Understanding the mysterious M2 macrophage through activation markers and effector mechanisms. Mediators Inflamm. 2015;2015: 816460.

    PubMed  PubMed Central  Google Scholar 

  42. Ding J, et al. M2 macrophage-derived G-CSF promotes trophoblasts EMT, invasion and migration via activating PI3K/Akt/Erk1/2 pathway to mediate normal pregnancy. J Cell Mol Med. 2021;25(4):2136–47.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Nilsson LL, Hviid TVF. HLA Class Ib-receptor interactions during embryo implantation and early pregnancy. Hum Reprod Update. 2022;28(3):435–54.

    CAS  PubMed  Google Scholar 

  44. Plaks V, et al. Uterine DCs are crucial for decidua formation during embryo implantation in mice. J Clin Invest. 2008;118(12):3954–65.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Camargo-Díaz F, et al. Colony stimulating factor-1 and leukemia inhibitor factor expression from current-cycle cannula isolated endometrial cells are associated with increased endometrial receptivity and pregnancy. BMC Womens Health. 2017;17(1):63.

    PubMed  PubMed Central  Google Scholar 

  46. Mor G, Aldo P, Alvero AB. The unique immunological and microbial aspects of pregnancy. Nat Rev Immunol. 2017;17(8):469–82.

    CAS  PubMed  Google Scholar 

  47. Dekel N, et al. The role of inflammation for a successful implantation. Am J Reprod Immunol. 2014;72(2):141–7.

    PubMed  PubMed Central  Google Scholar 

  48. Gnainsky Y, et al. Biopsy-induced inflammatory conditions improve endometrial receptivity: the mechanism of action. Reproduction. 2015;149(1):75–85.

    CAS  PubMed  Google Scholar 

  49. Gnainsky Y, et al. Local injury of the endometrium induces an inflammatory response that promotes successful implantation. Fertil Steril. 2010;94(6):2030–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Barash A, et al. Local injury to the endometrium doubles the incidence of successful pregnancies in patients undergoing in vitro fertilization. Fertil Steril. 2003;79(6):1317–22.

    PubMed  Google Scholar 

  51. Han X, Hu L. The effect of endometrial scratch on pregnancy outcomes of frozen-thawed embryo transfer: a propensity score-matched study. Gynecol Endocrinol. 2022;38(1):39–44.

    CAS  PubMed  Google Scholar 

  52. Mak JSM, et al. The effect of endometrial scratch on natural-cycle cryopreserved embryo transfer outcomes: a randomized controlled study. Reprod Biomed Online. 2017;35(1):28–36.

    PubMed  Google Scholar 

  53. Metwally M, et al. Endometrial scratch to increase live birth rates in women undergoing first-time in vitro fertilisation: RCT and systematic review. Health Technol Assess. 2022;26(10):1–212.

    PubMed  PubMed Central  Google Scholar 

  54. Metwally M, et al. A randomised controlled trial to assess the clinical effectiveness and safety of the endometrial scratch procedure prior to first-time IVF, with or without ICSI. Hum Reprod. 2021;36(7):1841–53.

    PubMed  PubMed Central  Google Scholar 

  55. Frantz S, et al. Decrease in pregnancy rate after endometrial scratch in women undergoing a first or second in vitro fertilization. A multicenter randomized controlled trial. Hum Reprod. 2019;34(1):92–9.

    CAS  PubMed  Google Scholar 

  56. Li W, et al. Randomised controlled trials evaluating endometrial scratching: assessment of methodological issues. Hum Reprod. 2019;34(12):2372–80.

    PubMed  Google Scholar 

  57. Lensen S, et al. A randomized trial of endometrial scratching before in vitro fertilization. N Engl J Med. 2019;380(4):325–34.

    PubMed  Google Scholar 

  58. van Hoogenhuijze NE, et al. Economic evaluation of endometrial scratching before the second IVF/ICSI treatment: a cost-effectiveness analysis of a randomized controlled trial (SCRaTCH trial). Hum Reprod. 2022;37(2):254–63.

    PubMed  Google Scholar 

  59. Paulson RJ. Cognitive dissonance in infertility treatment: why is it so difficult to discard disproven therapies, like the endometrial scratch? F S Rep. 2022;3(2):85.

    PubMed  PubMed Central  Google Scholar 

  60. Craciunas L, et al. Intrauterine administration of human chorionic gonadotropin (hCG) for subfertile women undergoing assisted reproduction. Cochrane Database Syst Rev. 2016;5:Cd011537.

    Google Scholar 

  61. Kamath MS, Kirubakaran R, Sunkara SK. Granulocyte-colony stimulating factor administration for subfertile women undergoing assisted reproduction. Cochrane Database Syst Rev. 2020;1(1):Cd013226.

    PubMed  Google Scholar 

  62. Siristatidis CS, et al. Endometrial injection of embryo culture supernatant for subfertile women in assisted reproduction. Cochrane Database Syst Rev. 2020;8(8):Cd013063.

    PubMed  Google Scholar 

  63. Makrigiannakis A, et al. Intrauterine CRH-treated PBMC in repeated implantation failure. Eur J Clin Invest. 2019;49(5): e13084.

    PubMed  Google Scholar 

  64. Makrigiannakis A, et al. Repeated implantation failure: a new potential treatment option. Eur J Clin Invest. 2015;45(4):380–4.

    CAS  PubMed  Google Scholar 

  65. Zhou P, et al. The effect of intralipid on pregnancy outcomes in women with previous implantation failure in in vitro fertilization/intracytoplasmic sperm injection cycles: a systematic review and meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2020;252:187–92.

    CAS  PubMed  Google Scholar 

  66. Kumar P, Marron K, Harrity C. Intralipid therapy and adverse reproductive outcome: is there any evidence? Reprod Fertil. 2021;2(3):173–86.

    PubMed  PubMed Central  Google Scholar 

  67. Pirtea P, et al. Rate of true recurrent implantation failure is low: results of three successive frozen euploid single embryo transfers. Fertil Steril. 2021;115(1):45–53.

    PubMed  Google Scholar 

  68. Casper RF. It’s time to pay attention to the endometrium. Fertil Steril. 2011;96(3):519–21.

    PubMed  Google Scholar 

  69. Catt JW, Henman M. Toxic effects of oxygen on human embryo development. Hum Reprod. 2000;15(Suppl 2):199–206.

    PubMed  Google Scholar 

  70. Kasius A, et al. Endometrial thickness and pregnancy rates after IVF: a systematic review and meta-analysis. Hum Reprod Update. 2014;20(4):530–41.

    PubMed  Google Scholar 

  71. Simeonov M, et al. The entire range of trigger-day endometrial thickness in fresh IVF cycles is independently correlated with live birth rate. Reprod Biomed Online. 2020;41(2):239–47.

    PubMed  Google Scholar 

  72. Yuan X, et al. Endometrial thickness as a predictor of pregnancy outcomes in 10787 fresh IVF-ICSI cycles. Reprod Biomed Online. 2016;33(2):197–205.

    PubMed  Google Scholar 

  73. Lv H, et al. Effect of endometrial thickness and embryo quality on live-birth rate of fresh IVF/ICSI cycles: a retrospective cohort study. Reprod Biol Endocrinol. 2020;18(1):89.

    PubMed  PubMed Central  Google Scholar 

  74. Gingold JA, et al. Endometrial pattern, but not endometrial thickness, affects implantation rates in euploid embryo transfers. Fertil Steril. 2015;104(3):620-8.e5.

    PubMed  PubMed Central  Google Scholar 

  75. Qiao L, et al. A fetal fraction enrichment method reduces false negatives and increases test success rate of fetal chromosome aneuploidy detection in early pregnancy loss. J Transl Med. 2022;20(1):345.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Toikkanen S, Joensuu H, Erkkola R. DNA aneuploidy in ectopic pregnancy and spontaneous abortions. Eur J Obstet Gynecol Reprod Biol. 1993;51(1):9–13.

    CAS  PubMed  Google Scholar 

  77. Liu J, et al. DNA microarray reveals that high proportions of human blastocysts from women of advanced maternal age are aneuploid and mosaic. Biol Reprod. 2012;87(6):148.

    PubMed  Google Scholar 

  78. Huang L, et al. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci USA. 2019;116(28):14105–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Gleicher N, Orvieto R. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10(1):21.

    PubMed  PubMed Central  Google Scholar 

  80. Capalbo A, et al. FISH reanalysis of inner cell mass and trophectoderm samples of previously array-CGH screened blastocysts shows high accuracy of diagnosis and no major diagnostic impact of mosaicism at the blastocyst stage. Hum Reprod. 2013;28(8):2298–307.

    CAS  PubMed  Google Scholar 

  81. Johnson DS, et al. Comprehensive analysis of karyotypic mosaicism between trophectoderm and inner cell mass. Mol Hum Reprod. 2010;16(12):944–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Rubio C, et al. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1-751.e13.

    CAS  PubMed  Google Scholar 

  83. Rubio C, et al. Embryonic cell-free DNA versus trophectoderm biopsy for aneuploidy testing: concordance rate and clinical implications. Fertil Steril. 2019;112(3):510–9.

    CAS  PubMed  Google Scholar 

  84. Kaye L, et al. Pregnancy rates for single embryo transfer (SET) of day 5 and day 6 blastocysts after cryopreservation by vitrification and slow freeze. J Assist Reprod Genet. 2017;34(7):913–9.

    PubMed  PubMed Central  Google Scholar 

  85. Tiegs AW, et al. Worth the wait? Day 7 blastocysts have lower euploidy rates but similar sustained implantation rates as day 5 and day 6 blastocysts. Hum Reprod. 2019;34(9):1632–9.

    CAS  PubMed  Google Scholar 

  86. Bourdon M, et al. Day 5 versus day 6 blastocyst transfers: a systematic review and meta-analysis of clinical outcomes. Hum Reprod. 2019;34(10):1948–64.

    PubMed  PubMed Central  Google Scholar 

  87. Yin X, et al. Increased activation of the PI3K/AKT pathway compromises decidualization of stromal cells from endometriosis. J Clin Endocrinol Metab. 2012;97(1):E35-43.

    CAS  PubMed  Google Scholar 

  88. Klemmt PA, et al. Stromal cells from endometriotic lesions and endometrium from women with endometriosis have reduced decidualization capacity. Fertil Steril. 2006;85(3):564–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  89. Aghajanova L, et al. Steroidogenic enzyme and key decidualization marker dysregulation in endometrial stromal cells from women with versus without endometriosis. Biol Reprod. 2009;80(1):105–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Lessey BA, Kim JJ. Endometrial receptivity in the eutopic endometrium of women with endometriosis: it is affected, and let me show you why. Fertil Steril. 2017;108(1):19–27.

    PubMed  PubMed Central  Google Scholar 

  91. Dubernard G, et al. Immunohistochemistry of adhesion molecules, metalloproteinases and NO-synthases in extravillous trophoblast of tubal pregnancy. Cell Mol Biol (Noisy-le-grand). 2005;51 Suppl:Ol829–37.

  92. Lessey BA, Young SL. What exactly is endometrial receptivity? Fertil Steril. 2019;111(4):611–7.

    PubMed  Google Scholar 

  93. Xu L, et al. Outcomes of embryo vitrification at different developmental stages: evaluation of 2412 warming cycles. Medicine (Baltimore). 2022;101(19): e29233.

    PubMed  Google Scholar 

  94. Zhang B, et al. Reduced ectopic pregnancy rate on day 5 embryo transfer compared with day 3: a meta-analysis. PLoS One. 2017;12(1): e0169837.

    PubMed  PubMed Central  Google Scholar 

  95. Fylstra DL. Ovarian ectopic pregnancy 6 years after supracervical cesarean hysterectomy: a case report. J Reprod Med. 2009;54(10):649–51.

    PubMed  Google Scholar 

  96. Sadłecki P, Grabiec M, Walentowicz-Sadłecka M. Broad ligament pregnancy - a rare and challenging diagnosis. Clin Case Rep. 2021;9(9): e04823.

    PubMed  PubMed Central  Google Scholar 

  97. Son SY, et al. Mesenteric ectopic pregnancy with tubo-ovarian abscess. Radiol Case Rep. 2021;16(5):1165–8.

    PubMed  PubMed Central  Google Scholar 

  98. Ganeshselvi P, et al. Primary abdominal pregnancy implanted on the sigmoid colon. J Obstet Gynaecol. 2003;23(6):667.

    CAS  PubMed  Google Scholar 

  99. Martingano D, et al. Ruptured primary omental pregnancy mimicking adnexal implantation. J Am Osteopath Assoc. 2017;117(2):128–32.

    PubMed  Google Scholar 

  100. Garzon S, et al. Primary hepatic pregnancy: report of a case treated with laparoscopic approach and review of the literature. Fertil Steril. 2018;110(5):925-931.e1.

    PubMed  Google Scholar 

  101. Chen L, et al. Successful laparoscopic management of diaphragmatic pregnancy:a rare case report and brief review of literature. BMC Pregnancy Childbirth. 2019;19(1):99.

    PubMed  PubMed Central  Google Scholar 

  102. Dabiri T, et al. Advanced extrauterine pregnancy at 33 weeks with a healthy newborn. Biomed Res Int. 2014;2014: 102479.

    PubMed  PubMed Central  Google Scholar 

  103. Jackson P, et al. A successful pregnancy following total hysterectomy. Br J Obstet Gynaecol. 1980;87(5):353–5.

    CAS  PubMed  Google Scholar 

  104. Kim MJ, et al. Sonographic diagnosis of a viable abdominal pregnancy with planned delivery after fetal lung maturation. J Clin Ultrasound. 2013;41(9):563–5.

    PubMed  Google Scholar 

  105. Gure T, et al. Term abdominal pregnancy with live baby: case report from Hiwot Fana Specialized University Hospital, Eastern Ethiopia. Int Med Case Rep J. 2021;14:689–95.

    PubMed  PubMed Central  Google Scholar 

  106. Quaas AM, Paulson RJ. Is the endometrial receptivity analysis batting high enough to warrant widespread-or at least selective-use? Fertil Steril. 2021;116(2):341–2.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

The first draft of the manuscript was conceptualized and written by Awoniyi Awonuga, and all authors critically revised the work. An extensive literature search was conducted and contributed to by all authors. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Awoniyi O. Awonuga.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awonuga, A.O., Camp, O.G., Abu-Soud, H.M. et al. Determinants of Embryo Implantation: Roles of the Endometrium and Embryo in Implantation Success. Reprod. Sci. 30, 2339–2348 (2023). https://doi.org/10.1007/s43032-023-01224-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-023-01224-w

Keywords

Navigation