Skip to main content

Advertisement

Log in

Low-Nutrient Environment-Induced Changes in Inflammation, Cell Proliferation, and PGC-1α Expression in Stromal Cells with Ovarian Endometriosis

  • Endometriosis: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Although nutrient status plays an important role in cell metabolism, its significance in endometriosis is obscure. Herein, we investigated the effects of a low-nutrient microenvironment on endometriosis. Stromal cells (SCs) from ovarian endometrioma (OESCs) or normal endometrium without endometriosis (NESCs) were isolated and cultured. A low-nutrient microenvironment was replicated by replacing the culture medium with Hank’s balanced salt solution. OESC and NESC proliferation under the low-nutrient condition was measured. The expression of exacerbating factors in endometriosis under the low-nutrient condition was examined at the mRNA and protein levels. OESCs showed higher proliferation than NESCs under the low-nutrient condition. In OESCs, the low-nutrient condition upregulated the mRNA expression of vascular endothelial growth factor (VEGF), interleukin-6 and -8, aromatase, Bcl-2, and peroxisome proliferator-activated receptor-gamma coactivator-1α (PGC-1α) and downregulated that of BAX and induced transcription of PI.3, PII, and exon II. Western blotting revealed elevated VEGF and PGC-1α expression under the low-nutrient condition in OESCs. These changes coincided with the elevated expression of PGC-1α, which was reduced at the mRNA level upon nutrient status rescue. Endometriosis is exacerbated by altered angiogenesis, inflammation, anti-apoptosis, and local estrogen production while trying to survive under a low-nutrient microenvironment; it may be attributed to PGC-1α-mediated metabolic mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data underlying this article will be shared at reasonable request to the corresponding author.

Code Availability

Not applicable.

References

  1. Zondervan KT, Becker CM, Koga K, Missmer SA, Taylor RN, Viganò P. Endometriosis. Nat Rev Dis Primers. 2018;4(1):9.

    Article  PubMed  Google Scholar 

  2. Sampson JA. Metastatic or embolic endometriosis, due to the menstrual dissemination of endometrial tissue into the venous circulation. Am J Pathol. 1927;3(2):93-110.43.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Qiu JJ, Liu MH, Zhang ZX, Chen LP, Yang QC, Liu HB. Transvaginal color Doppler sonography predicts ovarian interstitial fibrosis and microvascular injury in women with ovarian endometriotic cysts. Acta Obstet Gynecol Scand. 2012;91(5):605–12.

    Article  PubMed  Google Scholar 

  4. Püschel F, Favaro F, Redondo-Pedraza J, Lucendo E, Iurlaro R, Marchetti S, et al. Starvation and antimetabolic therapy promote cytokine release and recruitment of immune cells. Proc Natl Acad Sci U S A. 2020;117(18):9932–41.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Saunders PTK, Horne AW. Endometriosis: etiology, pathobiology, and therapeutic prospects. Cell. 2021;184(11):2807–24.

    Article  CAS  PubMed  Google Scholar 

  6. Arany Z, Foo SY, Ma Y, Ruas JL, Bommi-Reddy A, Girnun G, et al. HIF-independent regulation of VEGF and angiogenesis by the transcriptional coactivator PGC-1alpha. Nature. 2008;451(7181):1008–12.

    Article  CAS  PubMed  Google Scholar 

  7. Rius-Pérez S, Torres-Cuevas I, Millán I, Ortega ÁL, Pérez S. PGC-1α, Inflammation, and oxidative stress: an integrative view in metabolism. Oxid Med Cell Longev. 2020;2020:1452696.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kataoka H, Mori T, Okimura H, Matsushima H, Ito F, Koshiba A, et al. Peroxisome proliferator-activated receptor-γ coactivator 1α-mediated pathway as a possible therapeutic target in endometriosis. Hum Reprod. 2019;34(6):1019–29.

    Article  CAS  PubMed  Google Scholar 

  9. Suganuma I, Mori T, Ito F, Tanaka Y, Sasaki A, Matsuo S, et al. Peroxisome proliferator-activated receptor gamma, coactivator 1α enhances local estrogen biosynthesis by stimulating aromatase activity in endometriosis. J Clin Endocrinol Metab. 2014;99(7):E1191–8.

    Article  CAS  PubMed  Google Scholar 

  10. Li C, Jung S, Lee S, Jeong D, Yang Y, Kim KI, et al. Nutrient/serum starvation derived TRIP-Br 3 down-regulation accelerates apoptosis by destabilizing XIAP. Oncotarget. 2015;6(10):7522–35.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kondo A, Nonaka A, Shimamura T, Yamamoto S, Yoshida T, Kodama T, et al. Long noncoding RNA JHDM1D-AS1 promotes tumor growth by regulating angiogenesis in response to nutrient starvation. Mol Cell Biol. 2017;37(18):e00125-17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lin SC, Wang CC, Wu MH, Yang SH, Li YH, Tsai SJ. Hypoxia-induced microRNA-20a expression increases ERK phosphorylation and angiogenic gene expression in endometriotic stromal cells. J Clin Endocrinol Metab. 2012;97(8):E1515–23.

    Article  CAS  PubMed  Google Scholar 

  13. Yamanaka K, Xu B, Suganuma I, Kusuki I, Mita S, Shimizu Y, et al. Dienogest inhibits aromatase and cyclooxygenase-2 expression and prostaglandin E2 production in human endometriotic stromal cells in spheroid culture. Fertil Steril. 2012;97(2):477–82.

    Article  CAS  PubMed  Google Scholar 

  14. Manganelli V, Capozzi A, Recalchi S, Riitano G, Mattei V, Longo A, et al. The role of cardiolipin as a scaffold mitochondrial phospholipid in autophagosome formation: in vitro evidence. Biomolecules. 2021;11(2):222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  16. Kinoshita Y, Chen S. Induction of aromatase (CYP19) expression in breast cancer cells through a nongenomic action of estrogen receptor alpha. Cancer Res. 2003;63(13):3546–55.

    CAS  PubMed  Google Scholar 

  17. Mori T, Ito F, Matsushima H, Takaoka O, Koshiba A, Tanaka Y, et al. Dienogest reduces HSD17β1 expression and activity in endometriosis. J Endocrinol. 2015;225(2):69–76.

    Article  CAS  PubMed  Google Scholar 

  18. Burney RO, Giudice LC. Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 2012;98(3):511–9.

    Article  CAS  PubMed  Google Scholar 

  19. McLaren J, Prentice A, Charnock-Jones DS, Smith SK. Vascular endothelial growth factor (VEGF) concentrations are elevated in peritoneal fluid of women with endometriosis. Hum Reprod. 1996;11(1):220–3.

    Article  CAS  PubMed  Google Scholar 

  20. Fasciani A, D’Ambrogio G, Bocci G, Monti M, Genazzani AR, Artini PG. High concentrations of the vascular endothelial growth factor and interleukin-8 in ovarian endometriomata. Mol Hum Reprod. 2000;6(1):50–4.

    Article  CAS  PubMed  Google Scholar 

  21. Laschke MW, Menger MD. Basic mechanisms of vascularization in endometriosis and their clinical implications. Hum Reprod Update. 2018;24(2):207–24.

    Article  CAS  PubMed  Google Scholar 

  22. Lu Z, Zhang W, Jiang S, Zou J, Li Y. Effect of oxygen tensions on the proliferation and angiogenesis of endometriosis heterograft in severe combined immunodeficiency mice. Fertil Steril. 2014;101(2):568–76.

    Article  CAS  PubMed  Google Scholar 

  23. Delbandi AA, Mahmoudi M, Shervin A, Akbari E, Jeddi-Tehrani M, Sankian M, et al. Eutopic and ectopic stromal cells from patients with endometriosis exhibit differential invasive, adhesive, and proliferative behavior. Fertil Steril. 2013;100(3):761–9.

    Article  PubMed  Google Scholar 

  24. Harada T, Yoshioka H, Yoshida S, Iwabe T, Onohara Y, Tanikawa M, et al. Increased interleukin-6 levels in peritoneal fluid of infertile patients with active endometriosis. Am J Obstet Gynecol. 1997;176(3):593–7.

    Article  CAS  PubMed  Google Scholar 

  25. Iwabe T, Harada T, Tsudo T, Tanikawa M, Onohara Y, Terakawa N. Pathogenetic significance of increased levels of interleukin-8 in the peritoneal fluid of patients with endometriosis. Fertil Steril. 1998;69(5):924–30.

    Article  CAS  PubMed  Google Scholar 

  26. Tseng JF, Ryan IP, Milam TD, Murai JT, Schriock ED, Landers DV, et al. Interleukin-6 secretion in vitro is up-regulated in ectopic and eutopic endometrial stromal cells from women with endometriosis. J Clin Endocrinol Metab. 1996;81(3):1118–22.

    CAS  PubMed  Google Scholar 

  27. Li C, Zhao HL, Li YJ, Zhang YY, Liu HY, Feng FZ, et al. The expression and significance of leukemia inhibitory factor, interleukin-6 and vascular endothelial growth factor in Chinese patients with endometriosis. Arch Gynecol Obstet. 2021;304(1):163–70.

    Article  CAS  PubMed  Google Scholar 

  28. Velasco I, Rueda J, Acién P. Aromatase expression in endometriotic tissues and cell cultures of patients with endometriosis. Mol Hum Reprod. 2006;12(6):377–81.

    Article  CAS  PubMed  Google Scholar 

  29. Li MQ, Luo XZ, Meng YH, Mei J, Zhu XY, Jin LP, et al. CXCL8 enhances proliferation and growth and reduces apoptosis in endometrial stromal cells in an autocrine manner via a CXCR1-triggered PTEN/AKT signal pathway. Hum Reprod. 2012;27(7):2107–16.

    Article  CAS  PubMed  Google Scholar 

  30. Yoshino O, Izumi G, Shi J, Osuga Y, Hirota Y, Hirata T, et al. Activin-A is induced by interleukin-1β and tumor necrosis factor-α and enhances the mRNA expression of interleukin-6 and protease-activated receptor-2 and proliferation of stromal cells from endometrioma. Fertil Steril. 2011;96(1):118–21.

    Article  CAS  PubMed  Google Scholar 

  31. Steller H. Mechanisms and genes of cellular suicide. Science. 1995;267(5203):1445–9.

    Article  CAS  PubMed  Google Scholar 

  32. Agic A, Djalali S, Diedrich K, Hornung D. Apoptosis in endometriosis. Gynecol Obstet Invest. 2009;68(4):217–23.

    Article  PubMed  Google Scholar 

  33. Béliard A, Noël A, Foidart JM. Reduction of apoptosis and proliferation in endometriosis. Fertil Steril. 2004;82(1):80–5.

    Article  PubMed  Google Scholar 

  34. Taniguchi F, Kaponis A, Izawa M, Kiyama T, Deura I, Ito M, et al. Apoptosis and endometriosis. Front Biosci (Elite Ed). 2011;3:648–62.

    Article  PubMed  Google Scholar 

  35. Chao DT, Korsmeyer SJ. BCL-2 family: regulators of cell death. Annu Rev Immunol. 1998;16:395–419.

    Article  CAS  PubMed  Google Scholar 

  36. Meresman GF, Vighi S, Buquet RA, Contreras-Ortiz O, Tesone M, Rumi LS. Apoptosis and expression of Bcl-2 and Bax in eutopic endometrium from women with endometriosis. Fertil Steril. 2000;74(4):760–6.

    Article  CAS  PubMed  Google Scholar 

  37. Bulun SE, Economos K, Miller D, Simpson ER. CYP19 (aromatase cytochrome P450) gene expression in human malignant endometrial tumors. J Clin Endocrinol Metab. 1994;79(6):1831–4.

    CAS  PubMed  Google Scholar 

  38. Harada N. Aberrant expression of aromatase in breast cancer tissues. J Steroid Biochem Mol Biol. 1997;61(3–6):175–84.

    Article  CAS  PubMed  Google Scholar 

  39. Kitawaki J, Noguchi T, Amatsu T, Maeda K, Tsukamoto K, Yamamoto T, et al. Expression of aromatase cytochrome P450 protein and messenger ribonucleic acid in human endometriotic and adenomyotic tissues but not in normal endometrium. Biol Reprod. 1997;57(3):514–9.

    Article  CAS  PubMed  Google Scholar 

  40. Mori T, Ito F, Koshiba A, Kataoka H, Takaoka O, Okimura H, et al. Local estrogen formation and its regulation in endometriosis. Reprod Med Biol. 2019;18(4):305–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Babbar M, Huang Y, An J, Landas SK, Sheikh MS. CHTM1, a novel metabolic marker deregulated in human malignancies. Oncogene. 2018;37(15):2052–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Ms. Ayaka Miura and Ms. Makoto Kazui for providing technical assistance.

Funding

This work was supported partially by Grants-in-Aid for Scientific Research under Grant number [21K09523] from the Ministry of Education, Culture, Sports, Science, and Technology (Japan).

Author information

Authors and Affiliations

Authors

Contributions

K.S., T.M., and J.K. designed the study. K.S., Y.T., M.F., K.O., E.M., Y.T., H.O., H.K., O.T., and Y.T. conceived and carried out experiments. K.S., T.M., F.I., A.K., K.K., and I.K. contributed to the interpretation of the results. K.S. and T.M. wrote the article. All authors were involved in writing the paper and had final approval of the submitted and published version.

Corresponding author

Correspondence to Koki Shimura.

Ethics declarations

Ethics Approval

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and its later amendments. This study was approved by the institutional review board of the Kyoto Prefectural University of Medicine (ERB-C-855–1).

Consent to Participate

Informed consent was obtained from all patients for being included in the study.

Consent for Publication

All agreed to publish this article.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Supplementary file2

Supplementary Fig. 1 TUNEL staining of ovarian endometrioma stromal cell (OESC) and normal endometrium stromal cell (NESC) under low-nutrient conditions. TUNEL staining was performed after 24 h of incubation in low-nutrient medium, respectively. a, NESCs; b, OESCs; arrows, positive cells; bar, 200 μm. (PNG 2930 kb)

High resolution image (TIF 4265 kb)

Supplementary file3

Supplementary Fig. 2 Expression of IL-1β and TNF-α in ovarian endometrioma stromal cell (OESC) under low-nutrient conditions. The expression of them in OESCs (n=6) was measured using real-time polymerase chain reaction (PCR) after incubation with control (Cont) or low-nutrient (Low) medium for 24 h. *P < 0.05 versus Cont (Wilcoxon signed-rank test). Abbreviations: TNF-α, tumor necrosis factor-α (PNG 112 kb)

High resolution image (TIF 545 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shimura, K., Tarumi, Y., Fujii, M. et al. Low-Nutrient Environment-Induced Changes in Inflammation, Cell Proliferation, and PGC-1α Expression in Stromal Cells with Ovarian Endometriosis. Reprod. Sci. 30, 1094–1102 (2023). https://doi.org/10.1007/s43032-022-01089-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01089-5

Keywords

Navigation