Skip to main content

Advertisement

Log in

Effect of Maternal Body Mass Index on the Transcriptomic Network of Human First-Trimester Chorionic Villi

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The relationship between fertility and maternal body weight is shaped like an inverted “U,” meaning that fertility is negatively affected in overweight or underweight women. Timely and appropriate maternal–fetal interaction is a crucial part of successful pregnancy. However, it is not clear how body weight affects maternal–fetal interaction. Placental villi are the bridge for maternal–fetal interaction. Therefore, we collected villi from pregnant women with different body mass indexes (BMI), who voluntarily underwent induced abortion, to construct a molecular network via RNA-seq. Surprisingly, based on global and significant gene network analysis, we found that dysregulation of inflammatory reaction, cell adhesion, and immune response were the most significantly enriched pathways. We also conducted dynamic gene expression analysis with BMI as a variable, and identified several distinct clusters. Among them, cluster 9 showed an inverted “U” shape and genes in it were mainly enriched in chemical synaptic transmission and cell–cell adhesion via plasma-membrane adhesion molecules. Additionally, genes in the “U” shaped cluster (cluster 5) were enriched in regulation of adaptive immune response based on somatic recombination of immune receptors built from immunoglobulin superfamily domains and negative regulation of immune response. We thus conclude that maternal body weight can affect maternal–fetal interaction through alterations or aberrant activation of inflammatory reaction and immune response. Regulating inflammatory reaction may be a potential therapeutic strategy to improve fertility of overweight and underweight people.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Code Availability

Not applicable.

References

  1. Kumawat M, Choudhary P, Aggarwal S. Association of serum leptin with anthropometric indices of obesity, blood lipids, steroidal hormones, and insulin resistance in polycystic ovarian syndrome. J Hum Reprod Sci. 2021;14(3):228–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Palacz M, Tremellen K. High body mass index is associated with an expansion of endometrial T regulatory cell and macrophage populations. J Reprod Immunol. 2018;129:36–9.

    Article  CAS  PubMed  Google Scholar 

  3. Pan MH, Zhu CC, Ju JQ, Xu Y, Luo SM, Sun SC, et al. Single-cell transcriptome analysis reveals that maternal obesity affects DNA repair, histone methylation, and autophagy level in mouse embryos. J Cell Physiol. 2021;236(7):4944–53.

    Article  CAS  PubMed  Google Scholar 

  4. Hernaez A, Rogne T, Skara KH, Haberg SE, Page CM, Fraser A, et al. Body mass index and subfertility: multivariable regression and Mendelian randomization analyses in the Norwegian mother, father and child cohort study. Hum Reprod. 2021;36(12):3141–51.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Incedal Irgat S, Bakirhan H. The effect of obesity on human reproductive health and foetal life. Hum Fertil (Camb). 2021;1–12.

  6. Senbanjo OC, Akinlusi FM, Ottun TA. Early pregnancy body mass index, gestational weight gain and perinatal outcome in an obstetric population in Lagos. Nigeria Pan Afr Med J. 2021;39:136.

    PubMed  Google Scholar 

  7. Sun Y, Shen Z, Zhan Y, Wang Y, Ma S, Zhang S, et al. Investigation of optimal gestational weight gain based on the occurrence of adverse pregnancy outcomes for Chinese women: a prospective cohort study. Reprod Biol Endocrinol. 2021;19(1):130.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark J, Eaves LA, Gaona AR, Santos HP Jr, Smeester L, Bangma JT, et al. Pre-pregnancy BMI-associated miRNA and mRNA expression signatures in the placenta highlight a sexually-dimorphic response to maternal underweight status. Sci Rep. 2021;11(1):15743.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Norrman E, Petzold M, Gissler M, Spangmose AL, Opdahl S, Henningsen AK, et al. Cardiovascular disease, obesity, and type 2 diabetes in children born after assisted reproductive technology: a population-based cohort study. PLoS Med. 2021;18(9):e1003723.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Davies MJ. Evidence for effects of weight on reproduction in women. Reprod Biomed Online. 2006;12(5):552–61.

    Article  PubMed  Google Scholar 

  11. Diba-Bagtash F, Farshbaf-Khalili A, Ghasemzadeh A, Lotz L, Fattahi A, Shahnazi M, et al. Maternal C-reactive protein and in vitro fertilization (IVF) cycles. J Assist Reprod Genet. 2020;37(11):2635–41.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Li M, Sun F, Qian J, Chen L, Li D, Wang S, et al. Tim-3/CTLA-4 pathways regulate decidual immune cells-extravillous trophoblasts interaction by IL-4 and IL-10. FASEB J. 2021;35(8):e21754.

    Article  CAS  PubMed  Google Scholar 

  13. Ding J, Zhang Y, Cai X, Diao L, Yang C, Yang J. Crosstalk between trophoblast and macrophage at the maternal-fetal interface: current status and future perspectives. Front Immunol. 2021;12:758281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang Y, Zhang J, Zhao J, Hong X, Zhang H, Dai Q, et al. Couples’ prepregnancy body mass index and time to pregnancy among those attempting to conceive their first pregnancy. Fertil Steril. 2020;114(5):1067–75.

    Article  PubMed  Google Scholar 

  15. Yang B, Li M, Tang W, Liu W, Zhang S, Chen L, et al. Dynamic network biomarker indicates pulmonary metastasis at the tipping point of hepatocellular carcinoma. Nat Commun. 2018;9(1):678.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Kikut J, Komorniak N, Zietek M, Palma J, Szczuko M. Inflammation with the participation of arachidonic (AA) and linoleic acid (LA) derivatives (HETEs and HODEs) is necessary in the course of a normal reproductive cycle and pregnancy. J Reprod Immunol. 2020;141:103177.

    Article  CAS  PubMed  Google Scholar 

  17. You Y, Stelzl P, Joseph DN, Aldo PB, Maxwell AJ, Dekel N, et al. TNF-alpha regulated endometrial stroma secretome promotes trophoblast invasion. Front Immunol. 2021;12:737401.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Yockey LJ, Iwasaki A. Interferons and proinflammatory cytokines in pregnancy and fetal development. Immunity. 2018;49(3):397–412.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Teixeira SC, Silva RJ, Lopes-Maria JB, Gomes AO, Angeloni MB, Fermino ML, et al. Transforming growth factor (TGF)-beta1 and interferon (IFN)-gamma differentially regulate ICAM-1 expression and adhesion of Toxoplasma gondii to human trophoblast (BeWo) and uterine cervical (HeLa) cells. Acta Trop. 2021;224:106111.

    Article  PubMed  Google Scholar 

  20. Sakowicz A, Bralewska M, Pietrucha T, Figueras F, Habrowska-Gorczynska DE, Piastowska-Ciesielska AW, et al. The preeclamptic environment promotes the activation of transcription factor kappa B by P53/RSK1 complex in a HTR8/SVneo trophoblastic cell line. Int J Mol Sci. 2021;22(19):10200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Gomez-Chavez F, Correa D, Navarrete-Meneses P, Cancino-Diaz JC, Cancino-Diaz ME, Rodriguez-Martinez S. NF-kappaB and its regulators during pregnancy. Front Immunol. 2021;12:679106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Basatvat S, Russell JM, Saare M, Thurston LM, Salumets A, Fazeli A. Potential innate immunity-related markers of endometrial receptivity and recurrent implantation failure (RIF). Reprod Biol. 2021;21(4):100569.

    Article  CAS  PubMed  Google Scholar 

  23. Aboussahoud WS, Smith H, Stevens A, Wangsaputra I, Hunter HR, Kimber SJ, et al. The expression and activity of Toll-like receptors in the preimplantation human embryo suggest a new role for innate immunity. Hum Reprod. 2021;36(10):2661–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gao R, Kong L, Qing P, Cheng K, Chen H, Zhang S, et al. Interleukin-1 β as clinically predictive risk marker for recurrent pregnancy loss in women positive for antinuclear antibody. Int J Clin Pract. 2021;75(12):e14887.

    Article  CAS  PubMed  Google Scholar 

  25. Huang Q, Jin X, Li P, Zheng Z, Jiang Y, Liu H. Elevated inflammatory mediators from the maternal-fetal interface to fetal circulation during labor. Cytokine. 2021;148:155707.

    Article  CAS  PubMed  Google Scholar 

  26. Mendes J, Rodrigues-Santos P, Areia A, Almeida J, Alves V, Santos-Rosa M, et al. Type 2 and type 3 innate lymphoid cells at the maternal-fetal interface: implications in preterm birth. BMC Immunol. 2021;22(1):28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Piccinni MP, Raghupathy R, Saito S, Szekeres-Bartho J. Cytokines, hormones and cellular regulatory mechanisms favoring successful reproduction. Front Immunol. 2021;12:717808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu XG, Chen JJ, Zhou HL, Wu Y, Lin F, Shi J, et al. Identification and validation of the signatures of infiltrating immune cells in the eutopic endometrium endometria of women with endometriosis. Front Immunol. 2021;12:671201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Piccinni M, Robertson S, Saito S. Editorial: adaptive immunity in pregnancy. Front Immunol. 2021;12:770242.

    Article  PubMed  PubMed Central  Google Scholar 

  30. McDonald EA, Wolfe MW. The pro-inflammatory role of adiponectin at the maternal-fetal interface. Am J Reprod Immunol. 2011;66(2):128–36.

    Article  CAS  PubMed  Google Scholar 

  31. Sammar M, Siwetz M, Meiri H, Fleming V, Altevogt P, Huppertz B. Expression of CD24 and Siglec-10 in first trimester placenta: implications for immune tolerance at the fetal-maternal interface. Histochem Cell Biol. 2017;147(5):565–74.

    Article  CAS  PubMed  Google Scholar 

  32. Zhang H, Xie Y, Hu Z, Yu H, Xie X, Ye Y, et al. Integrative analysis of the expression of SIGLEC family members in lung adenocarcinoma via data mining. Front Oncol. 2021;11:608113.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Zhan S, Zheng J, Zhang H, Zhao M, Liu X, Jiang Y, et al. LILRB4 decrease on uDCs exacerbate abnormal pregnancy outcomes following toxoplasma gondii infection. Front Microbiol. 2018;9:588.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Mitsune A, Yamada M, Fujino N, Numakura T, Ichikawa T, Suzuki A, et al. Upregulation of leukocyte immunoglobulin-like receptor B4 on interstitial macrophages in COPD; their possible protective role against emphysema formation. Respir Res. 2021;22(1):232.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fan J, Li J, Han J, Zhang Y, Gu A, Song F, et al. Expression of leukocyte immunoglobulin-like receptor subfamily B expression on immune cells in hepatocellular carcinoma. Mol Immunol. 2021;136:82–97.

    Article  CAS  PubMed  Google Scholar 

  36. Li Z, Zhao M, Li T, Zheng J, Liu X, Jiang Y, et al. Decidual macrophage functional polarization during abnormal pregnancy due to toxoplasma gondii: role for LILRB4. Front Immunol. 2017;8:1013.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang H, Sun JD, Yan LJ, Zhao XP. PDGF-D/PDGFRbeta promotes tongue squamous carcinoma cell (TSCC) progression via activating p38/AKT/ERK/EMT signal pathway. Biochem Biophys Res Commun. 2016;478(2):845–51.

    Article  CAS  PubMed  Google Scholar 

  38. Wu Q, Hou X, Xia J, Qian X, Miele L, Sarkar FH, et al. Emerging roles of PDGF-D in EMT progression during tumorigenesis. Cancer Treat Rev. 2013;39(6):640–6.

    Article  CAS  PubMed  Google Scholar 

  39. Jimenez KM, Morel A, Parada-Nino L, Alejandra Gonzalez-Rodriguez M, Florez S, Bolivar-Salazar D, et al. Identifying new potential genetic biomarkers for HELLP syndrome using massive parallel sequencing. Pregnancy Hypertens. 2020;22:181–90.

    Article  PubMed  Google Scholar 

  40. Kemp SS, Aguera KN, Cha B, Davis GE. Defining endothelial cell-derived factors that promote pericyte recruitment and capillary network assembly. Arterioscler Thromb Vasc Biol. 2020;40(11):2632–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Arin KO, Kelsey HC, Natalia SH, Chia-Lung W, Farshid G. Is obesity a disease of stem cells? Cell Stem Cell. 2020;27(1):15–8.

    Article  Google Scholar 

Download references

Funding

This work was funded by the National Key Research and Development Program of China (2021YFC2700701, 2021YFC2700400, 2018YFC1004303), the National Natural Science Foundation of China (82071606, 81871168), Shandong Provincial Key Research and Development Program(2020ZLYS02)and the Fundamental Research Funds of Shandong University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Baoxia Cui or Shigang Zhao.

Ethics declarations

Ethics Approval

The study was conducted in accordance with the Declaration of Helsinki, and the protocol was approved by the Second Hospital of Shandong University Research and Ethics Committees.

Consent to Participate

Informed consent was obtained from all participants before the collection of embryonic villi samples.

Consent for Publication

All authors declare that they have given consent for this article’s publication.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, L., Pang, D., Li, Y. et al. Effect of Maternal Body Mass Index on the Transcriptomic Network of Human First-Trimester Chorionic Villi. Reprod. Sci. 30, 1324–1334 (2023). https://doi.org/10.1007/s43032-022-01088-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01088-6

Keywords

Navigation