Skip to main content
Log in

Role of the Glycogen Synthase Kinase 3-Cyclic AMP/Protein Kinase A in the Immobilization of Human Sperm by Tideglusib

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract 

Tideglusib is considered to be a promising alternative to nonyl alcohol-9 contraceptives. Previous studies have demonstrated that the rapid spermicidal effect of tideglusib at a high concentration (≥ 10 μM) may occur through detergent-like activity; however, the effect of low concentrations of tideglusib (< 5 μM) on sperm is unknown. We explored the intracellular mechanism of tideglusib (< 5 μM) on the immobilization of human sperm by exploring related signaling pathways in human sperm. After treatment with tideglusib (1.25 μM) for 2 h, sperm motility rate decreased to 0, while sperm membrane integrity rate was 70%. Protein tyrosine phosphorylation level and intracellular cyclic adenosine 3,5-monophosphate (cAMP) concentration decreased significantly compared to those in the control group. Isobutylmethylxanthine and 8-Bromo-cAMP relieved the inhibition of spermatozoa tyrosine phosphorylation, while tyrosine phosphorylation of sperm protein in the H89 and CALP1 treatment groups was significantly inhibited, and there was no difference in the tideglusib treatment group. H-89 and CALP1 reduced the level of serine phosphorylation of GSK-3α/β (Ser21/9), while its level was enhanced by IBMX and 8-Bromo-cAMP. Our results show the existence of the GSK3-cAMP/PKA regulatory loop in human sperm, which may mediate the immobilization effect of tideglusib at low of concentrations (e.g., 1.25 μM) on sperm motility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Code Availability

Not applicable.

Data Availability

All study data can be provided upon request.

References 

  1. Dacheux J-L, Dacheux F. New insights into epididymal function in relation to sperm maturation. Reproduction. 2014;147:R27–42. https://doi.org/10.1530/rep-13-0420.

    Article  CAS  PubMed  Google Scholar 

  2. Freitas MJ, Vijayaraghavan S, Fardilha M. Signaling mechanisms in mammalian sperm motility†. Biol Reprod. 2016;96:2–12. https://doi.org/10.1095/biolreprod.116.144337.

    Article  Google Scholar 

  3. Vijayaraghavan S, Hoskins DD. Regulation of bovine sperm motility and cyclic adenosine 3′,5′-monophosphate by adenosine and its analogues1. Biol Reprod. 1986;34:468–77. https://doi.org/10.1095/biolreprod34.3.468.

    Article  CAS  PubMed  Google Scholar 

  4. Vadnais ML, Aghajanian HK, Lin A, Gerton GL. Signaling in sperm: toward a molecular understanding of the acquisition of sperm motility in the mouse epididymis. Biol Reprod. 2013;89:127. https://doi.org/10.1095/biolreprod.113.110163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Si Y, Okuno M. Role of tyrosine phosphorylation of flagellar proteins in hamster sperm hyperactivation1. Biol Reprod. 1999;61:240–6. https://doi.org/10.1095/biolreprod61.1.240.

    Article  CAS  PubMed  Google Scholar 

  6. Hess KC, Jones BH, Marquez B, et al. The “soluble” adenylyl cyclase in sperm mediates multiple signaling events required for fertilization. Dev Cell. 2005;9:249–59. https://doi.org/10.1016/j.devcel.2005.06.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carlson AE, Hille B, Babcock DF. External Ca2+ acts upstream of adenylyl cyclase SACY in the bicarbonate signaled activation of sperm motility. Dev Biol. 2007;312:183–92. https://doi.org/10.1016/j.ydbio.2007.09.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Buffone MG, Wertheimer EV, Visconti PE, Krapf D. Central role of soluble adenylyl cyclase and cAMP in sperm physiology. Biochim Biophys Acta. 2014;1842:2610–20. https://doi.org/10.1016/j.bbadis.2014.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharmacol Rev. 2006;58:488–520. https://doi.org/10.1124/pr.58.3.5.

    Article  CAS  PubMed  Google Scholar 

  10. Omori K, Kotera J. Overview of PDEs and their regulation. Circ Res. 2007;100:309–27. https://doi.org/10.1161/01.RES.0000256354.95791.f1.

    Article  CAS  PubMed  Google Scholar 

  11. Breitbart H, Rotman T, Rubinstein S, Etkovitz N. Role and regulation of PI3K in sperm capacitation and the acrosome reaction. Mol Cell Endocrinol. 2010;314:234–8. https://doi.org/10.1016/j.mce.2009.06.009.

    Article  CAS  PubMed  Google Scholar 

  12. Lefièvre L, Jha KN, de Lamirande E, Visconti PE, Gagnon C. Activation of protein kinase A during human sperm capacitation and acrosome reaction. Journal of Andrology. 2002;23:709–16. https://doi.org/10.1002/j.1939-4640.2002.tb02314.x.

    Article  PubMed  Google Scholar 

  13. Holt WV, Harrison RAP. Bicarbonate stimulation of boar sperm motility via a protein kinase A—dependent pathway: between-cell and between-ejaculate differences are not due to deficiencies in protein kinase A activation. J Androl. 2002;23:557–65. https://doi.org/10.1002/j.1939-4640.2002.tb02279.x.

    Article  CAS  PubMed  Google Scholar 

  14. Bajpai M, Doncel G. Involvement of tyrosine kinase and cAMP-dependent kinase cross-talk in the regulation of human sperm motility. Reproduction. 2003;126:183–95. https://doi.org/10.1530/rep.0.1260183.

    Article  CAS  PubMed  Google Scholar 

  15. Luconi M, Porazzi I, Ferruzzi P, Marchiani S, Forti G, Baldi E. Tyrosine phosphorylation of the a kinase anchoring protein 3 (AKAP3) and soluble adenylate cyclase are involved in the increase of human sperm motility by bicarbonate. Biol Reprod. 2005;72:22–32. https://doi.org/10.1095/biolreprod.104.032490.

    Article  CAS  PubMed  Google Scholar 

  16. Kaidanovich-Beilin O, Woodgett JR. GSK-3: functional insights from cell biology and animal models. Front Mol Neurosci. 2011;4:40. https://doi.org/10.3389/fnmol.2011.00040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Medina M, Wandosell F. Deconstructing GSK-3: the fine regulation of its activity. Int J Alzheimers Dis. 2011;2011:479249. https://doi.org/10.4061/2011/479249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jope RS, Yuskaitis CJ, Beurel E. Glycogen synthase kinase-3 (GSK3): inflammation, diseases, and therapeutics. Neurochem Res. 2007;32:577–95. https://doi.org/10.1007/s11064-006-9128-5.

    Article  CAS  PubMed  Google Scholar 

  19. Somanath PR, Jack SL, Vijayaraghavan S. Changes in sperm glycogen synthase kinase-3 serine phosphorylation and activity accompany motility initiation and stimulation. J Androl. 2004;25:605–17. https://doi.org/10.1002/j.1939-4640.2004.tb02831.x.

    Article  CAS  PubMed  Google Scholar 

  20. Bragado MJ, Aparicio IM, Gil MC, Garcia-Marin LJ. Protein kinases A and C and phosphatidylinositol 3 kinase regulate glycogen synthase kinase-3A serine 21 phosphorylation in boar spermatozoa. J Cell Biochem. 2010;109:65–73. https://doi.org/10.1002/jcb.22393.

    Article  CAS  PubMed  Google Scholar 

  21. Dey S, Goswami S, Eisa A, et al. Cyclic AMP and glycogen synthase kinase 3 form a regulatory loop in spermatozoa. J Cell Physiol. 2018;233:7239–52. https://doi.org/10.1002/jcp.26557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bhattacharjee R, Goswami S, Dudiki T, et al. Targeted disruption of glycogen synthase kinase 3A (GSK3A) in mice affects sperm motility resulting in male infertility. Biol Reprod. 2015;92:65. https://doi.org/10.1095/biolreprod.114.124495.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Belenky M, Breitbart H. Role and regulation of glycogen synthase kinase-3 beta in bovine spermatozoa. Mol Reprod Dev. 2017;84:8–18. https://doi.org/10.1002/mrd.22759.

    Article  CAS  PubMed  Google Scholar 

  24. Silva JV, Freitas MJ, Correia BR, et al. Profiling signaling proteins in human spermatozoa: biomarker identification for sperm quality evaluation. Fertil Steril. 2015;104(845–56):e8. https://doi.org/10.1016/j.fertnstert.2015.06.039.

    Article  CAS  Google Scholar 

  25. Freitas MJ, Silva JV, Brothag C, Regadas-Correia B, Fardilha M, Vijayaraghavan S. Isoform-specific GSK3A activity is negatively correlated with human sperm motility. Mol Hum Reprod. 2019;25:171–83. https://doi.org/10.1093/molehr/gaz009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem. 2012;287:893–904. https://doi.org/10.1074/jbc.M111.306472.

    Article  CAS  PubMed  Google Scholar 

  27. Chen Z, Shu N, Wang Y, et al. Tideglusib, a prospective alternative to nonoxynol-9 contraceptive. Contracept X. 2019;1:100007. https://doi.org/10.1016/j.conx.2019.100007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Martinez A, Alonso M, Castro A, Pérez C, Moreno FJ. First non-ATP competitive glycogen synthase kinase 3 β (GSK-3β) inhibitors: thiadiazolidinones (TDZD) as potential drugs for the treatment of Alzheimer’s disease. J Med Chem. 2002;45:1292–9. https://doi.org/10.1021/jm011020u.

    Article  CAS  PubMed  Google Scholar 

  29. Balasubramaniam M, Mainali N, Bowroju SK, et al. Structural modeling of GSK3beta implicates the inactive (DFG-out) conformation as the target bound by TDZD analogs. Sci Rep. 2020;10:18326. https://doi.org/10.1038/s41598-020-75020-w.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Zhou J, Lal H, Chen X, et al. GSK-3alpha directly regulates beta-adrenergic signaling and the response of the heart to hemodynamic stress in mice. J Clin Invest. 2010;120:2280–91. https://doi.org/10.1172/JCI41407.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Rao R, Patel S, Hao C, Woodgett J, Harris R. GSK3beta mediates renal response to vasopressin by modulating adenylate cyclase activity. J Am Soc Nephrol. 2010;21:428–37. https://doi.org/10.1681/ASN.2009060672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Tao S, Kakade VR, Woodgett JR, et al. Glycogen synthase kinase-3beta promotes cyst expansion in polycystic kidney disease. Kidney Int. 2015;87:1164–75. https://doi.org/10.1038/ki.2014.427.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carlyle BC, Mackie S, Christie S, Millar JK, Porteous DJ. Co-ordinated action of DISC1, PDE4B and GSK3beta in modulation of cAMP signalling. Mol Psychiatry. 2011;16:693–4. https://doi.org/10.1038/mp.2011.17.

    Article  CAS  PubMed  Google Scholar 

  34. Soares DC, Carlyle BC, Bradshaw NJ, Porteous DJ. DISC1: structure, function, and therapeutic potential for major mental illness. ACS Chem Neurosci. 2011;2:609–32. https://doi.org/10.1021/cn200062k.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zhu H, Suk HY, Yu RY, et al. Evolutionarily conserved role of calcineurin in phosphodegron-dependent degradation of phosphodiesterase 4D. Mol Cell Biol. 2010;30:4379–90. https://doi.org/10.1128/MCB.01193-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Aparicio IM, Bragado MJ, Gil MC, et al. Porcine sperm motility is regulated by serine phosphorylation of the glycogen synthase kinase-3alpha. Reproduction. 2007;134:435–44. https://doi.org/10.1530/REP-06-0388.

    Article  CAS  PubMed  Google Scholar 

  37. Koch S, Acebron SP, Herbst J, Hatiboglu G, Niehrs C. Post-transcriptional Wnt Signaling governs epididymal sperm maturation. Cell. 2015;163:1225–36. https://doi.org/10.1016/j.cell.2015.10.029.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (grant number 81671508) and the National Key Research and Development Program of China (grant number 2016YFC1000905).

Author information

Authors and Affiliations

Authors

Contributions

Zhiyu Shao and Hua Diao designed and supervised this study. Weiwei Wang, Bingbing Jiang, and Bin Yan collected clinical information and analyzed the data. Bin Yan, Yiting Yang, and Suying Liu recruited the participants and collected clinical information. Yuhua Li and Lina Guo performed the Western blot experiments. Weiwei Wang and Lina Guo analyzed the data and wrote the manuscript. All other authors reviewed, corrected, and approved the final manuscript.

Corresponding authors

Correspondence to Zhiyu Shao or Hua Diao.

Ethics declarations

Ethics Approval

The Institutional Ethics Committee of Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT, Shanghai, China) approved this study (approved No. PJ2018-24).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

All authors have given consent to publish.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Guo, L., Jiang, B. et al. Role of the Glycogen Synthase Kinase 3-Cyclic AMP/Protein Kinase A in the Immobilization of Human Sperm by Tideglusib. Reprod. Sci. 30, 1281–1290 (2023). https://doi.org/10.1007/s43032-022-01086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01086-8

Keywords

Navigation