Skip to main content
Log in

Effects of Aerobic Exercise Combined with Oyster Peptide Supplement on the Formation of CTX-induced Late-Onset Hypogonadism in Male Rats

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The purpose of this study is to investigate the effect of aerobic exercise (AE) training and/or oyster peptide (OP) supplementation on the formation of late-onset hypogonadism (LOH). AE training and/or OP supplement was performed during Cytoxan (CTX)-induced LOH formation in male SD rats for 6 consecutive weeks. Low dose of CTX could decrease mating times, the levels of luteinizing hormone (LH), total testosterone (TT), free testosterone (FT) in serum and TT, androgen receptor (AR), androgen binding protein (ABP), and glutathione peroxidase (GSH-Px) in testicle, but increase capture latency, mating latency, and malondialdehyde, and downregulate the mRNA expression of steroidogenic acute regulatory (StAR), P450 cholesterol side chain cleavage enzyme (P450scc), and StAR-related lipid transfer domain 7 (StARD7) in testicle. Every change was altered by AE training combined with OP supplement significantly, except for serum LH. Moreover, the effect of AE training combined with OP supplement was better than that of AE training on serum TT, FSH, testicular TT, mating latency, capture times, and mating times. AE training combined with OP supplement during CTX-induced LOH formation can prevent the LOH development by enhancing pituitary-gonads axis’s function and reducing testicular oxidative stress to promote testosterone synthesis and spermatogenesis.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Huhtaniemi IT. Andropause–lessons from the European Male Ageing Study. Ann Endocrinol (Paris). 2014;75:128–31. https://doi.org/10.1016/j.ando.2014.03.005.

    Article  PubMed  Google Scholar 

  2. Isidori AM, Giannetta E, Gianfrilli D, Greco EA, Bonifacio V, Aversa A, Isidori A, Fabbri A, Lenzi A. Effects of testosterone on sexual function in men: results of a meta-analysis. Clin Endocrinol (Oxf). 2005;63:381–94. https://doi.org/10.1111/j.1365-2265.2005.02350.x.

    Article  CAS  PubMed  Google Scholar 

  3. Almehmadi Y, Yassin DJ, Yassin AA. Erectile dysfunction is a prognostic indicator of comorbidities in men with late onset hypogonadism. Aging Male. 2015;18:186–94. https://doi.org/10.3109/13685538.2015.1046044.

    Article  PubMed  Google Scholar 

  4. Rastrelli G, Corona G, Tarocchi M, Mannucci E, Maggi M. How to define hypogonadism? Results from a population of men consulting for sexual dysfunction. J Endocrinol Invest. 2016;39:473–84. https://doi.org/10.1007/s40618-015-0425-1.

    Article  CAS  PubMed  Google Scholar 

  5. Lunenfeld B, Mskhalaya G, Zitzmann M, Arver S, Kalinchenko S, Tishova Y, Morgentaler A. Recommendations on the diagnosis, treatment and monitoring of hypogonadism in men. Aging Male. 2015;18:5–15. https://doi.org/10.3109/13685538.2015.1004049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Feldman HA, Longcope C, Derby CA, Johannes CB, Araujo AB, Coviello AD, Bremner WJ, McKinlay JB. Age trends in the level of serum testosterone and other hormones in middle-aged men: longitudinal results from the Massachusetts male aging study. J Clin Endocrinol Metab. 2002;87:589–98. https://doi.org/10.1210/jcem.87.2.8201.

    Article  CAS  PubMed  Google Scholar 

  7. Omar YA, Younis SE, Ismail IY, El-Sakka AI. Testosterone level and endothelial dysfunction in patients with vasculogenic erectile dysfunction. Andrology. 2017;5:527–34. https://doi.org/10.1111/andr.12347.

    Article  CAS  PubMed  Google Scholar 

  8. Corona G, Rastrelli G, Maggi M. Diagnosis and treatment of late-onset hypogonadism: systematic review and meta-analysis of TRT outcomes. Best Pract Res Clin Endocrinol Metab. 2013;27:557–79. https://doi.org/10.1016/j.beem.2013.05.002.

    Article  CAS  PubMed  Google Scholar 

  9. Choi SW, Jeon SH, Kwon EB, Zhu GQ, Lee KW, Choi JB, Jeong HC, Kim KS, Bae SR, Bae WJ, Kim SJ, Cho HJ, Ha US, Hong SH, Hwang SY, Kim SW. Effect of Korean herbal formula (modified Ojayeonjonghwan) on androgen receptor expression in an aging rat model of late onset hypogonadism. World J Mens Health. 2019;37:105–12. https://doi.org/10.5534/wjmh.180051.

    Article  PubMed  Google Scholar 

  10. Mazzeo RS. Aging, immune function, and exercise: hormonal regulation. Int J Sports Med. 2000;21 Suppl 1:S10–3. https://doi.org/10.1055/s-2000-1445.

    Article  CAS  PubMed  Google Scholar 

  11. Matos B, Howl J, Ferreira R, Fardilha M. Exploring the effect of exercise training on testicular function. Eur J Appl Physiol. 2019;119:1–8. https://doi.org/10.1007/s00421-018-3989-6.

    Article  CAS  PubMed  Google Scholar 

  12. Kumagai H, Yoshikawa T, Zempo-Miyaki A, Myoenzono K, Tsujimoto T, Tanaka K, Maeda S. Vigorous physical activity is associated with regular aerobic exercise-induced increased serum testosterone levels in overweight/obese men. Horm Metab Res. 2018;50:73–9. https://doi.org/10.1055/s-0043-117497.

    Article  CAS  PubMed  Google Scholar 

  13. Hayes LD, Herbert P, Sculthorpe NF, Grace FM. Exercise training improves free testosterone in lifelong sedentary aging men. Endocr Connect. 2017;6:306–10. https://doi.org/10.1530/EC-17-0082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seo DY, Lee SR, Kwak HB, Park H, Seo KW, Noh YH, Song KM, Ryu JK, Ko KS, Rhee BD, Han J. Exercise training causes a partial improvement through increasing testosterone and eNOS for erectile function in middle-aged rats. Exp Gerontol. 2018;108:131–8. https://doi.org/10.1016/j.exger.2018.04.003.

    Article  CAS  PubMed  Google Scholar 

  15. Scharhag J, Herrmann M, Urhausen A, Haschke M, Herrmann W, Kindermann W. Independent elevations of N-terminal pro-brain natriuretic peptide and cardiac troponins in endurance athletes after prolonged strenuous exercise. Am Heart J. 2005;150:1128–34. https://doi.org/10.1016/j.ahj.2005.01.051.

    Article  CAS  PubMed  Google Scholar 

  16. Jin QG, Shi WT, Wang YC, Li SY, Xue C, Xu HR, Wu MT, Wei Y. Oyster peptide prevents the occurrence of exercise-hypogonadal male condition by improving the function of pituitary gonadal axis in male rats. Andrologia. 2021;53:e14005. https://doi.org/10.1111/and.14005.

    Article  CAS  PubMed  Google Scholar 

  17. Yi X, Tang D, Cao S, Li T, Gao H, Ma T, Yao T, Li J, Chang B. Effect of different exercise loads on testicular oxidative stress and reproductive function in obese male mice. Oxid Med Cell Longev. 2020;2020:3071658. https://doi.org/10.1155/2020/3071658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hajizadeh MB, Tartibian B. Combined aerobic and resistance exercise training for improving reproductive function in infertile men: a randomized controlled trial. Appl Physiol Nutr Metab. 2017;42:1293–306. https://doi.org/10.1139/apnm-2017-0249.

    Article  CAS  Google Scholar 

  19. Bahadorani M, Tavalaee M, Abedpoor N, Ghaedi K, Nazem MN, Nasr-Esfahani MH. Effects of branched-chain amino acid supplementation and/or aerobic exercise on mouse sperm quality and testosterone production. Andrologia. 2019;51:e13183. https://doi.org/10.1111/and.13183.

    Article  CAS  PubMed  Google Scholar 

  20. Schwarz ER, Willix RJ. Impact of a physician-supervised exercise-nutrition program with testosterone substitution in partial androgen-deficient middle-aged obese men. J Geriatr Cardiol. 2011;8:201–6. https://doi.org/10.3724/SP.J.1263.2011.00201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chen H, Cheng S, Fan F, Tu M, Xu Z, Du M. Identification and molecular mechanism of antithrombotic peptides from oyster proteins released in simulated gastro-intestinal digestion. Food Funct. 2019;10:5426–35. https://doi.org/10.1039/c9fo01433k.

    Article  CAS  PubMed  Google Scholar 

  22. Cheng S, Tu M, Chen H, Xu Z, Wang Z, Liu H, Zhao G, Zhu B, Du M. Identification and inhibitory activity against alpha-thrombin of a novel anticoagulant peptide derived from oyster (Crassostrea gigas) protein. Food Funct. 2018;9:6391–400. https://doi.org/10.1039/c8fo01635f.

    Article  CAS  PubMed  Google Scholar 

  23. Wang J, Hu J, Cui J, Bai X, Du Y, Miyaguchi Y, Lin B. Purification and identification of a ACE inhibitory peptide from oyster proteins hydrolysate and the antihypertensive effect of hydrolysate in spontaneously hypertensive rats. Food Chem. 2008;111:302–8. https://doi.org/10.1016/j.foodchem.2008.03.059.

    Article  CAS  PubMed  Google Scholar 

  24. Wang YK, He HL, Wang GF, Wu H, Zhou BC, Chen XL, Zhang YZ. Oyster (Crassostrea gigas) hydrolysates produced on a plant scale have antitumor activity and immunostimulating effects in BALB/c mice. Mar Drugs. 2010;8:255–68. https://doi.org/10.3390/md8020255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng C, Tian L, Jiao Y, Tan Y, Liu C, Luo Y, Hong H. The effect of steam cooking on the proteolysis of pacific oyster (Crassostrea gigas) proteins: digestibility, allergenicity, and bioactivity. Food Chem. 2022;379:132160. https://doi.org/10.1016/j.foodchem.2022.132160.

    Article  CAS  PubMed  Google Scholar 

  26. Jin Q, Zhou M, Hu Y, Chen L, Liu Y, Wang Y, Wu M, Zhang R, Liu W. Inhibitory effect and mechanism of oyster enzymatic hydrolysate on lung metastasis in the subcutaneous Lewis lung cancer model in mice. Kafkas Univ Vet Fak. 2020. https://doi.org/10.9775/kvfd.2020.24776.

    Article  Google Scholar 

  27. Moon PD, Kim MH, Lim HS, Oh HA, Nam SY, Han NR, Kim MJ, Jeong HJ, Kim HM. Taurine, a major amino acid of oyster, enhances linear bone growth in a mouse model of protein malnutrition. BioFactors. 2015;41:190–7. https://doi.org/10.1002/biof.1213.

    Article  CAS  PubMed  Google Scholar 

  28. Li M, Zhou M, Wei Y, Jia F, Yan Y, Zhang R, Cai M, Gu R. The beneficial effect of oyster peptides and oyster powder on cyclophosphamide-induced reproductive impairment in male rats: a comparative study. J Food Biochem. 2020;44:e13468. https://doi.org/10.1111/jfbc.13468.

    Article  CAS  PubMed  Google Scholar 

  29. Jin Q, Ma Y, Shi W, Wang J, Zhao R, Zhang H, Wu M, Liu W. Oyster oligopeptide improving cyclophosphamide-induced partial androgen deficiency of the aging male by promotion of testosterone synthesis. Geriatr Gerontol Int. 2021. https://doi.org/10.1111/ggi.14129.

    Article  PubMed  PubMed Central  Google Scholar 

  30. He QH, Zhou X. Study of partial and rogen deficiency model induced by cyclophosphamide in rats. J Hunan Univ Tradit Chin Med. 2011;31:15–7+29.

  31. Jeong HC, Jeon SH, Guan QZ, Bashraheel F, Choi SW, Kim SJ, Bae WJ, Cho HJ, Ha US, Hong SH, Lee JY, Hong SB, Kim SW. Lycium chinense mill improves hypogonadism via anti-oxidative stress and anti-apoptotic effect in old aged rat model. Aging Male. 2020;23:287–96. https://doi.org/10.1080/13685538.2018.1498079.

    Article  CAS  PubMed  Google Scholar 

  32. Qu M, Zhao Y, Qing X, Zhang X, Li H. Androgen-dependent miR-125a-5p targets LYPLA1 and regulates global protein palmitoylation level in late-onset hypogonadism males. J Cell Physiol. 2021;236:4738–49. https://doi.org/10.1002/jcp.30195.

    Article  CAS  PubMed  Google Scholar 

  33. Li WR, Chen L, Chang ZJ, Xin H, Liu T, Zhang YQ, Li GY, Zhou F, Gong YQ, Gao ZZ, Xin ZC. Autophagic deficiency is related to steroidogenic decline in aged rat Leydig cells. Asian J Androl. 2011;13:881–8. https://doi.org/10.1038/aja.2011.85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Nutsch VL, Will RG, Tobiansky DJ, Reilly MP, Gore AC, Dominguez JM. Age-related changes in sexual function and steroid-hormone receptors in the medial preoptic area of male rats. Horm Behav. 2017;96:4–12. https://doi.org/10.1016/j.yhbeh.2017.08.008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Alshinnawy AS, El-Sayed WM, Taha AM, Sayed AA, Salem AM. Astragalus membranaceus and Punica granatum alleviate infertility and kidney dysfunction induced by aging in male rats. Turk J Biol. 2020;44:166–75. https://doi.org/10.3906/biy-2001-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chen ZL, Zhang XC, Xue Q, Yang Q. Effect of cyclophosphamide on mouse spermatogenic obstacles. Prog Vet Med. 2017;38:34–8. https://doi.org/10.16437/j.cnki.1007-5038.2017.05.008.

    Article  Google Scholar 

  37. Chen Q, Shan C, Su J, Chen W, Zhu J, Chen S, Lyu G. Effect of Wubi Shanyao pills on sexual function in mice with kidney-yang-deficiency induced by hydrocortisone. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2020;49:697–704. https://doi.org/10.3785/j.issn.1008-9292.2020.12.04.

    Article  PubMed  Google Scholar 

  38. Afifi M, Almaghrabi OA, Kadasa NM. Ameliorative effect of zinc oxide nanoparticles on antioxidants and sperm characteristics in streptozotocin-induced diabetic rat testes. Biomed Res Int. 2015;2015:153573. https://doi.org/10.1155/2015/153573.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cosentino MJ, Nishida M, Rabinowitz R, Cockett AT. Histopathology of prepubertal rat testes subjected to various durations of spermatic cord torsion. J Androl. 1986;7:23–31. https://doi.org/10.1002/j.1939-4640.1986.tb00862.x.

    Article  CAS  PubMed  Google Scholar 

  40. Erdem AO, Coskun OD, Baser AT, Sirinyildiz F, Ek R, Culhaci N, Yazici M, Ozkisacik S. Comparison of the effects of intermittent reperfusion and hypothermia in preventing testicular ischemia-reperfusion injury in the testicular torsion model in rats. J Pediatr Urol. 2019;15:617–23. https://doi.org/10.1016/j.jpurol.2019.09.013.

    Article  PubMed  Google Scholar 

  41. Wang C, Nieschlag E, Swerdloff R, Behre HM, Hellstrom WJ, Gooren LJ, Kaufman JM, Legros JJ, Lunenfeld B, Morales A, Morley JE, Schulman C, Thompson IM, Weidner W, Wu FC. ISA, ISSAM, EAU, EAA and ASA recommendations: investigation, treatment and monitoring of late-onset hypogonadism in males. Int J Impot Res. 2009;21:1–8. https://doi.org/10.1038/ijir.2008.41.

    Article  PubMed  Google Scholar 

  42. Chen Y, Li L, Yan CY, Wang ZS, Sui WK, Yang P, Wang HF, Li RX, Li YK, Lian FL, Li D, Feng QL, Feng ZJ, Zeng XY, Meng FY, Bu GX, Cao XH, Du XG. Effects of small molecule polypeptide of oyster on sexual function in male mice. Genomics Appl Biol. 2019;38(1):109–16. https://doi.org/10.13417/j.gab.038.000109.

    Article  Google Scholar 

  43. Gill-Sharma MK. Testosterone retention mechanism in Sertoli cells: a biochemical perspective. Open Biochem J. 2018;12:103–12. https://doi.org/10.2174/1874091X01812010103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Manna PR, Stetson CL, Slominski AT, Pruitt K. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine. 2016;51:7–21. https://doi.org/10.1007/s12020-015-0715-6.

    Article  CAS  PubMed  Google Scholar 

  45. Zirkin BR, Papadopoulos V. Leydig cells: formation, function, and regulation. Biol Reprod. 2018;99:101–11. https://doi.org/10.1093/biolre/ioy059.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Stocco DM, Zhao AH, Tu LN, Morohaku K, Selvaraj V. A brief history of the search for the protein(s) involved in the acute regulation of steroidogenesis. Mol Cell Endocrinol. 2017;441:7–16. https://doi.org/10.1016/j.mce.2016.07.036.

    Article  CAS  PubMed  Google Scholar 

  47. Chen H, Hardy MP, Zirkin BR. Age-related decreases in Leydig cell testosterone production are not restored by exposure to LH in vitro. Endocrinology. 2002;143:1637–42. https://doi.org/10.1210/endo.143.5.8802.

    Article  CAS  PubMed  Google Scholar 

  48. Beattie MC, Adekola L, Papadopoulos V, Chen H, Zirkin BR. Leydig cell aging and hypogonadism. Exp Gerontol. 2015;68:87–91. https://doi.org/10.1016/j.exger.2015.02.014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Das UB, Mallick M, Debnath JM, Ghosh D. Protective effect of ascorbic acid on cyclophosphamide- induced testicular gametogenic and androgenic disorders in male rats. Asian J Androl. 2002;4:201–7.

    CAS  PubMed  Google Scholar 

  50. Huang D, Wei W, Xie F, Zhu X, Zheng L, Lv Z. Steroidogenesis decline accompanied with reduced antioxidation and endoplasmic reticulum stress in mice testes during ageing. Andrologia. 2018;50. https://doi.org/10.1111/and.12816.

  51. Zhao YT, Qi YW, Hu CY, Chen SH, Liu Y. Advanced glycation end products inhibit testosterone secretion by rat Leydig cells by inducing oxidative stress and endoplasmic reticulum stress. Int J Mol Med. 2016;38:659–65. https://doi.org/10.3892/ijmm.2016.2645.

    Article  CAS  PubMed  Google Scholar 

  52. Diemer T, Allen JA, Hales KH, Hales DB. Reactive oxygen disrupts mitochondria in MA-10 tumor Leydig cells and inhibits steroidogenic acute regulatory (StAR) protein and steroidogenesis. Endocrinology. 2003;144:2882–91. https://doi.org/10.1210/en.2002-0090.

    Article  CAS  PubMed  Google Scholar 

  53. Jana K, Jana N, De DK, Guha SK. Ethanol induces mouse spermatogenic cell apoptosis in vivo through over-expression of Fas/Fas-L, p53, and caspase-3 along with cytochrome c translocation and glutathione depletion. Mol Reprod Dev. 2010;77:820–33. https://doi.org/10.1002/mrd.21227.

    Article  CAS  PubMed  Google Scholar 

  54. Jana K, Samanta PK, De DK. Nicotine diminishes testicular gametogenesis, steroidogenesis, and steroidogenic acute regulatory protein expression in adult albino rats: possible influence on pituitary gonadotropins and alteration of testicular antioxidant status. Toxicol Sci. 2010;116:647–59. https://doi.org/10.1093/toxsci/kfq149.

    Article  CAS  PubMed  Google Scholar 

  55. Hajizadeh MB, Tartibian B. Moderate aerobic exercise training for improving reproductive function in infertile patients: a randomized controlled trial. Cytokine. 2017;92:55–67. https://doi.org/10.1016/j.cyto.2017.01.007.

    Article  CAS  Google Scholar 

  56. Zhao X, Bian Y, Sun Y, Li L, Wang L, Zhao C, Shen Y, Song Q, Qu Y, Niu S, Wu W, Gao F. Effects of moderate exercise over different phases on age-related physiological dysfunction in testes of SAMP8 mice. Exp Gerontol. 2013;48:869–80. https://doi.org/10.1016/j.exger.2013.05.063.

    Article  CAS  PubMed  Google Scholar 

  57. Zhu Q, Cui YG. Research progress of regulatory mechanism of spermatogenesis. J Reprod Med. 2016;25:378–83.

    CAS  Google Scholar 

  58. Jana K, Yin X, Schiffer RB, Chen JJ, Pandey AK, Stocco DM, Grammas P, Wang X. Chrysin, a natural flavonoid enhances steroidogenesis and steroidogenic acute regulatory protein gene expression in mouse Leydig cells. J Endocrinol. 2008;197:315–23. https://doi.org/10.1677/JOE-07-0282.

    Article  CAS  PubMed  Google Scholar 

  59. Blanco-Rodriguez J, Martinez-Garcia C. Apoptosis precedes detachment of germ cells from the seminiferous epithelium after hormone suppression by short-term oestradiol treatment of rats. Int J Androl. 1998;21:109–15. https://doi.org/10.1046/j.1365-2605.1998.00109.x.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Key Research and Development project in China, Grant/Award Number: 2016YFD0400603, and Open Project of the Beijing Engineering Research Center of Protein and Functional Peptides, Grant/Award Number: 2017PFP002.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed by Wenting Shi, Yu Liu, Qiguan Jin, Meitong Wu, Qizheng Sun, Zheng Li, and Wenying Liu. The first draft of the manuscript was written by Wenting Shi and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Qiguan Jin or Wenying Liu.

Ethics declarations

Ethics Approval

The study was conducted according to the guidelines of the Declaration of Helsinki. The experimental procedures were approved by the Experimental Animal Management Committee and Experimental Animal Ethics Committee of Yangzhou University (YzuDWLL-201804–001).

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 120 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, W., Liu, Y., Jin, Q. et al. Effects of Aerobic Exercise Combined with Oyster Peptide Supplement on the Formation of CTX-induced Late-Onset Hypogonadism in Male Rats. Reprod. Sci. 30, 1291–1305 (2023). https://doi.org/10.1007/s43032-022-01068-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01068-w

Keywords

Navigation