Skip to main content

Fadogia agrestis (Schweinf. Ex Hiern) Stem Extract Restores Selected Biomolecules of Erectile Dysfunction in the Testicular and Penile Tissues of Paroxetine-Treated Wistar Rats

Abstract

Inadequate release of nitric oxide (NO) by the penile tissue impacts negatively on penile erection causing erectile dysfunction (ED). Fadogia agrestis has been implicated in the management of ED without information on key biomolecules associated with ED in male rats. Therefore, this study evaluated the influence of aqueous extract of Fadogia agrestis stem (AEFAS) on key biomolecules associated with ED in the penile and testicular tissues of male Wistar rats induced with ED by paroxetine. Thirty male rats were assigned into 6 groups (I, II, III, IV, V and VI) of 5. Group I (sham control, without ED) was administered distilled water orally. Paroxetine-induced ED rats in groups II (negative control), III (positive control), IV, V and VI received distilled water, sildenafil citrate (SC, 50 mg/kg body weight) and AEFAS at 18, 50 and 100 mg/kg body weight respectively. Paroxetine lowered/reduced (p < 0.05) the MF, IF, EF, NO, cGMP, catalase, SOD, T-SH, GSH and GST whilst it prolonged/increased ML, IL, EL, PEI, AChE, PDE5, arginase, ACE, TBARS and H2O2. Contrastingly, AEFAS like sildenafil citrate increased (p < 0.05) the penile and testicular NO, cGMP, catalase, SOD, T-SH, GSH and GST and reduced AChE, PDE5, arginase, ACE, TBARS and H2O2 to levels that compared favourably (p > 0.05) with those of sham control. The study concluded that AEFAS restored the NO/cGMP pathway and ED-associated key enzymes in the penile and testicular tissues of male rats via antioxidant means. The study recommended the use of aqueous extract of Fadogia agrestis stem in managing ED after clinical trials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Scheme 1

Data availability

The raw data can be tendered upon reasonable request.

Code availability

Not applicable.

Abbreviations

ACE:

Angiotensin-converting enzyme

ACh:

Acetylcholine

AChE:

Acetylcholinesterase

ADE:

Adenosine deaminase

Ang I:

Angiotensin I

Ang II:

Angiotensin II

cGMP:

3′-5′-Cyclic guanosine monophosphate

ED:

Erectile dysfunction

H2O2 :

Hydrogen peroxide

NO:

Nitric oxide

NOS:

Nitric oxide synthase

O2 :

Superoxide anion

ONOO :

Peroxynitrite

PDE5:

Phosphodiesterase V

ROS:

Reactive oxygen species

GST:

Glutathione S-transferase

GSH:

Reduced glutathione

TBARS:

Thiobarbituric acid reactive substances

T-SH:

Total thiol

OH·:

Hydroxyl radical

MF:

Mount frequency

IF:

Intromission frequency

EF:

Ejaculatory frequency

ML:

Mount latency

IL:

Intromission latency

EL:

Ejaculatory latency

PEI:

Post-ejaculatory interval

AEFAS:

Aqueous extract of Fadogia agrestis stem

SOD:

Superoxide dismutase

CAT:

Catalase

GTP:

Guanosine triphosphate

References

  1. Sangiorgi G, Cereda A, Benedetto D, Bonanni M, Chiricolo G, Cota L, Martuscelli E, Greco F. Anatomy, pathophysiology, molecular mechanisms, and clinical management of erectile dysfunction in patients affected by coronary artery disease: a review, Biomedicines. 2021;9:https://doi.org/10.3390/biomedicines9040432

  2. Matsubara K, Higaki T, Matsubara Y, Nawa A. Nitric oxide and reactive oxygen species in the pathogenesis of preeclampsia. Int J Mol Sci. 2015;16:4600–14. https://doi.org/10.3390/ijms16034600.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tousoulis D, Kampoli A-M, Tentolouris Nikolaos Papageorgiou C, Stefanadis C. The role of nitric oxide on endothelial function. Curr Vasc Pharmacol. 2011;10:4–18. https://doi.org/10.2174/157016112798829760.

    Article  Google Scholar 

  4. Caldwell RW, Rodriguez PC, Toque HA, Narayanan SP, Caldwell RB. Arginase : a multifaceted enzyme important in health and disease. Physiol Rev. 2018;641–665. https://doi.org/10.1152/physrev.00037.2016

  5. Clemente GS, van Waarde A, Antunes IF, Dömling A, Elsinga PH. Arginase as a potential biomarker of disease progression: a molecular imaging perspective. Int J Mol Sci. 2020;21:1–36. https://doi.org/10.3390/ijms21155291.

    Article  CAS  Google Scholar 

  6. Kessler A, Sollie S, Challacombe B, Briggs K, Van Hemelrijck M. The global prevalence of erectile dysfunction: a review. BJU Int. 2019;124:587–99. https://doi.org/10.1111/bju.14813.

    Article  PubMed  Google Scholar 

  7. Teferi MY, Abdulwuhab M, Yesuf JS. Evaluation of in vivo antidiarrheal activity of % methanolic leaf extract of Osyris quadripartita Decne (Santalaceae) in Swiss albino mice. J Evid Based Integr Med. 2019;24:1–9. https://doi.org/10.1177/2515690X19833340.

    Article  Google Scholar 

  8. Sanon S, Ollivier E, Azas N, Mahiou V, Gasquet M, Ouattara CT, Nebie I, Traore AS, Esposito F, Balansard G, Timon-david P, Fumoux F. Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso. J Ethnopharmacol. 2003;86:143–7. https://doi.org/10.1016/S0378-8741(02)00381-1.

    Article  CAS  PubMed  Google Scholar 

  9. Yakubu MT, Ogunro OB, Ademola RA, Awakan JO, Oyewo EB, Muhammad NO, Ajiboye TO. Fadogia agrestis (Schweinf. Ex Hiern) aqueous stem extract: chemical profile and its effects on acetaminophen-induced oxidative stress in male rats Nig J Biochem Mol Biol. 2017;32:120–33.

  10. Yakubu MT, Akanji MA, Oladiji AT. Aphrodisiac potentials of the aqueous extract of Fadogia agrestis (Schweinf. Ex Hiern) stem in male albino rats. Asian J Androl. 2005;7:399–404. https://doi.org/10.1111/j.1745-7262.2005.00052.x

  11. Yakubu MT, Ogunro OB. Effects of aqueous extract of Fadogia agrestis stem in alloxan-induced diabetic rats, Bangladesh. J Pharmacol. 2014;9:356–63. https://doi.org/10.3329/bjp.v9i3.18610.

    Article  Google Scholar 

  12. Yakubu MT, Ogunro OB, Ojewuyi OB. Attenuation of biochemical, haematological and histological indices of alloxan toxicity in male rats by aqueous extract of Fadogia agrestis (Schweinf. Ex Hiern) stem. Iran J Toxicol. 2015;9:1322–30.

  13. Yakubu MT, Akanji MA, Oladiji AT. Effects of oral administration of aqueous extract of Fadogia agrestis (Schweinf . Ex Hiern ) stem on some testicular function indices of male rats. J Ethnopharmacol. 2008;115:288–292. https://doi.org/10.1016/j.jep.2007.10.004

  14. Oyekunle OA, Okojie AK, Udoh US. Analgesic and anti-inflammatory effects of an extract of Fadogia agrestis in rats. Neurophysiol. 2010;42:124–9. https://doi.org/10.1007/s11062-010-9140-x.

  15. Ameen OM, Olatunji GA, Atata RF, Usman LA. Antimicrobial activity, cytotoxic test and phytochemical screening of extracts of the stem of Fadogia agrestis. NISEB J. 2011;11:79–84.

  16. Kiyawa SA. Antibacterial activity and aphrodisiac potential of the ethanolic extracts of Fadogia agretis (Schweinf. Ex Hiern) stem in male albino rats, Alger. J Nat Prod. 2017;1.

  17. Namadina MM, Aliyu BS, Ibrahim S, Mukhtar Y, Abbas RL, Bako AT, Kamal RM, Sunusi U, Muttaka A, Sunusi H, Hafiz SS, Aliko AA, Adamu MM, Umar AM, Sale AI, Abubakar KD, Yunusa AY, Abdullahi NM, Mukhtar AU, Yakubu N. Pharmacognostic, elemental and acute toxicity study of Fadogia agrestis root, Bayero. J Pure Appl Sci. 2021;12:1–11. https://doi.org/10.4314/bajopas.v12i2.1.

    Article  Google Scholar 

  18. Yakubu MT, Akanji MA, Oladiji AT. Effect of chronic administration of aqueous extract of Fadogia agrestis stem on male rat kidney function indices. In: Govil R, Singh JN, and Bhardarag VK, editors. Recent Prog Med Plants; 2008. p. 359–367.

  19. Yakubu MT, Oladiji AT, Akanji MA. Mode of cellular toxicity of aqueous extract of Fadogia agrestis (Schweinf. Ex Hiern) stem in male rat liver and kidney. Hum Exp Toxicol. 2009;28:469–78. https://doi.org/10.1177/0960327109106973.

  20. Yakubu MT, Oladiji AT, Akanji MA. Evaluation of biochemical indices of male rat reproductive function and testicular histology in Wistar rats following chronic administration of aqueous extract of Fadogia agrestis (Schweinf. Ex Heirn) stem. Afr J Biochem Res. 2007;1:156–63.

  21. Yakubu MT, Akanji MA, Oladiji AT. Hematological evaluation in male albino rats following chronic administration of aqueous extract of Fadogia agrestis stem. Pharmacogn Mag. 2003;3:34–8.

  22. Yakubu MT, Akanji MA, Oladiji AT. Alterations in serum lipid profile of male rats by oral administration of aqueous extract of Fadogia agrestis stem. Res J Med Plant. 2008;2:66–73.

  23. Yakubu MT, Akanji MA, Oladiji AT. Evaluation of selected biochemical parameters of male albino rat liver following administration of aqueous extract of Fadogia agrestis stem. In: Sharma NK, Singh AK, Govil VK, and Goyal JN, editors. Recent Prog. Med. Plants, Stadium Press LLC, Huston, Texas, USA for Indian Agricultural Research Institute, New Delhi, India, New Delhi; 2006. p. 393–401.

  24. Chan JSW, Waldinger MD, Olivier B, Oosting RS. Drug-induced sexual dysfunction in rats, Curr. Protoc. Neurosci. 2010;1–11. https://doi.org/10.1002/0471142301.ns0934s53

  25. Yakubu MT, Jimoh RO. Carpolobia lutea roots restore sexual arousal and performance in paroxetine-induced sexually impaired male rats. Rev Int Androl. 2014;12:90–9. https://doi.org/10.1016/j.androl.2014.02.002.

    Article  Google Scholar 

  26. Green LC, Wagner DA, Glogowski J, Skipper PL, Wishnok JS, Tannenbaum SR. Analysis of nitrate, nitrite, and [15N]nitrate in biological fluids. Anal Biochem. 1982;126:131–8. https://doi.org/10.1016/0003-2697(82)90118-X.

    Article  CAS  PubMed  Google Scholar 

  27. Tsugawa M, Moriwaki K, Iida S, Fujii H, Yamane R, Fujimoto M. An enzyme-linked immunosorbent assay (ELISA) for guanosine 3’,5’-cyclic monophosphate (cGMP) in human plasma and urine using monoclonal antibody. J Immunoassay. 1991;12:263–76. https://doi.org/10.1080/01971529108055071.

    Article  CAS  PubMed  Google Scholar 

  28. Ellman FSR GL, Courtney KD, Andres V. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol. 1961;7:88–95. https://doi.org/10.1016/0006-2952(61)90145-9.

    Article  Google Scholar 

  29. Kelly SJ, Butler LG. Enzymic hydrolysis of phosphonate esters. Reaction mechanism of intestinal 5′-nucleotide phosphodiesterase. Biochem. 1977;16:1102–4. https://doi.org/10.1021/bi00625a011.

  30. Zhang C, Hein TW, Wang W, Chang C, Kuo L. Constitutive expression of arginase in microvascular endothelial cells counteracts nitric oxide-mediated vasodilatory function. FASEB J. 2001;15:1264–6. https://doi.org/10.1096/fj.00-0681fje.

    Article  CAS  PubMed  Google Scholar 

  31. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 1971;20:1637–48. https://doi.org/10.1016/0006-2952(71)90292-9.

    Article  CAS  PubMed  Google Scholar 

  32. Habig WH, Jakoby WB. Assays for differentiation of glutathione S-transferases. Methods Enzymol. 1981;77:398–405. https://doi.org/10.1016/S0076-6879(81)77053-8.

    Article  CAS  PubMed  Google Scholar 

  33. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6. https://doi.org/10.1016/S0076-6879(84)05016-3.

    Article  CAS  PubMed  Google Scholar 

  34. Jollow JR, Mitchell DJ, Zampaglione JR, Gillette N. Bromobenzene-induced liver necrosis. Protective role of glutathione and evidence for 3,4-bromobenzene oxide as the hepatotoxic metabolite. Pharmacology. 1974;11:151–69. https://doi.org/10.1159/000136485.

  35. Ellman GL. Tissue Sulfhydryl Groups. Arch Biochem Biophys. 1959;70–77.

  36. Puntel RL, Nogueira CW, Rocha JBT. Krebs cycle intermediates modulate thiobarbituric acid reactive species (TBARS) production in rat brain in vitro. Neurochem Res. 2005;30:225–35. https://doi.org/10.1007/s11064-004-2445-7.

    Article  CAS  PubMed  Google Scholar 

  37. Wolff SP. Ferrous ion oxidation in presence of ferric ion indicator xylenol orange for measurement of hydroperoxides. Methods Enzymol. 1994;233:182–9. https://doi.org/10.1016/S0076-6879(94)33021-2.

    Article  CAS  Google Scholar 

  38. Misra HP, Fridovich I. The role of superoxide anion in the autoxidation of epinephrine and a simple assay for superoxide dismutase. J Biol Chem. 1972;247:3170–5. https://doi.org/10.1016/s0021-9258(19)45228-9.

    Article  CAS  PubMed  Google Scholar 

  39. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951;193:265–75. https://doi.org/10.1016/s0021-9258(19)52451-6.

    Article  CAS  PubMed  Google Scholar 

  40. Peak TC, Richman A, Gur S, Yafi FA, Hellstrom WJG. The role of PDE5 inhibitors and the NO/cGMP pathway in cancer. Sex Med Rev. 2016;4:74–84. https://doi.org/10.1016/j.sxmr.2015.10.004.

    Article  PubMed  Google Scholar 

  41. Adefegha SA, Oyeleye SI, Dada FA, Olasehinde TA, Oboh G. Modulatory effect of quercetin and its glycosylated form on key enzymes and antioxidant status in rats penile tissue of paroxetine-induced erectile dysfunction. Biomed Pharmacother. 2018;107:1473–9. https://doi.org/10.1016/j.biopha.2018.08.128.

    Article  CAS  PubMed  Google Scholar 

  42. Ademosun AO, Adebayo AA, Oboh G. Anogeissus leiocarpus attenuates paroxetine-induced erectile dysfunction in male rats via enhanced sexual behavior, nitric oxide level and antioxidant status. Biomed Pharmacother. 2019;111:1029–35. https://doi.org/10.1016/j.biopha.2019.01.022.

    Article  CAS  PubMed  Google Scholar 

  43. Masuku NP, Unuofin JO, Lebelo SL. Promising role of medicinal plants in the regulation and management of male erectile dysfunction. Biomed Pharmacother. 2020;130:110555. https://doi.org/10.1016/j.biopha.2020.110555.

    Article  CAS  PubMed  Google Scholar 

  44. Tee BH, Hoe SZ, Cheah SH, Lam SK. Effects of root extracts of Eurycoma longifolia Jack on corpus cavernosum of rat. Med Princ Pract. 2017;26:258–65. https://doi.org/10.1159/000464363.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Jin LM. Angiotensin II signaling and its implication in erectile dysfunction. J Sex Med. 2009;6:302–10. https://doi.org/10.1111/j.1743-6109.2008.01188.x.

    Article  CAS  PubMed  Google Scholar 

  46. Oboh G, Ademiluyi AO, Oyeleye SI, Olasehinde TA, Boligon AA. Modulation of some markers of erectile dysfunction and malonaldehyde levels in isolated rat penile tissue with unripe and ripe plantain peels: Identification of the constituents of the plants using HPLC. Pharm Biol. 2017;51:1920–6. https://doi.org/10.1080/13880209.2017.1340966.

    Article  CAS  Google Scholar 

  47. Akomolafe S, Oboh G, Olasehinde T, Oyeleye S, Ogunsuyi O. Modulatory effects of aqueous extract from Tetracarpidium conophorum leaves on key enzymes linked to erectile dysfunction and oxidative stress-induced lipid peroxidation in penile and testicular tissues. J Appl Pharm Sci. 2017;7:51–6. https://doi.org/10.7324/JAPS.2017.70107.

    Article  CAS  Google Scholar 

  48. Agarwal A, Nandipati KC, Sharma RK, Zippe CD, Raina R. Role of oxidative stress in the pathophysiological mechanism of erectile dysfunction. J Androl. 2006;27:335–47. https://doi.org/10.2164/jandrol.05136.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the technical aid provided by Mr. Dele Aiyepeku, University of Ilorin, Ilorin. Nigeria

Author information

Authors and Affiliations

Authors

Contributions

Conception and design: OBO and MTY.

Literature search and acquisition of data: OBO.

Analysis, interpretation of data and drafting the manuscript: OBO.

Revising for intellectual content: MTY.

Final approval of the completed article: OBO and MTY.

Corresponding author

Correspondence to Olalekan Bukunmi Ogunro.

Ethics declarations

Ethics approval and consent to participate

The study was approved by the Departmental Ethical Review Committee, University of Ilorin, Ilorin, Nigeria (Protocol Approval Number: BCH/UIL/20/2018) and was performed in accordance with the guidelines on the care and the use of laboratory animals. The participants gave their consent to be part of the research study.

Consent for publication

The authors contributed to the study and consented to its submission after the final review.

Conflict of interest

The authors declare no competing interests.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ogunro, O.B., Yakubu, M.T. Fadogia agrestis (Schweinf. Ex Hiern) Stem Extract Restores Selected Biomolecules of Erectile Dysfunction in the Testicular and Penile Tissues of Paroxetine-Treated Wistar Rats. Reprod. Sci. 30, 690–700 (2023). https://doi.org/10.1007/s43032-022-01050-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01050-6

Keywords

  • Antioxidant system
  • Erectile dysfunction
  • Fadogia agrestis
  • Penile tissue
  • Rubiaceae
  • Testes