Skip to main content

Advertisement

Log in

Effect of In Vitro Maturation of Human Oocytes Obtained After Controlled Ovarian Hormonal Stimulation on the Expression of Development- and Zona Pellucida-Related Genes and Their Interactions

  • Reproductive Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 08 August 2022

This article has been updated

Abstract

In an in vitro fertilization program, approximately 10–15% of oocytes obtained after controlled ovarian stimulation are immature, with germinal vesicles (GVs). These oocytes are usually discarded in clinical practice; however, an in vitro maturation (IVM) procedure can be applied to mature them. There are scarce data in the literature on the effect of IVM on the expression of important development- and zona pellucida (ZP)–related genes in human oocytes; therefore, we wanted to determine this. One hundred nine human oocytes were collected from patients enrolled in an intracytoplasmic sperm injection program. The expression of the BMP4, GDF9, ZP1, ZP2, ZP3, and ZP4 genes was analyzed using RT–qPCR in oocytes matured in vitro with different reproductive hormones in the IVM medium (AMH, FSH + hCG, FSH + hCG + AMH), in in vivo matured oocytes and in immature oocytes with GVs. No statistically significant differences in the expression of selected genes in oocytes were observed among groups with different reproductive hormones in IVM medium. However, several interesting significant correlations were found between BMP4 and GDF9, and ZP1 and ZP4; between GDF9 and ZP1, and ZP2 and ZP4; and between ZP1 and ZP3 and ZP4 in the in vitro matured oocytes, while no such correlations were present in other groups of oocytes. The type of reproductive hormone in the maturation medium does not affect the expression of the analyzed genes in oocytes during the maturation process. However, the in vitro maturation procedure itself generated correlations among analyzed genes that were otherwise not present in in vivo matured and immature oocytes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

The datasets used and analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

Change history

Abbreviations

AMH:

Anti-Müllerian hormone

AMHR2:

Anti-Müllerian hormone receptor 2

ART:

Assisted reproductive technology

BMI:

Body mass index

BMP4:

Bone morphogenic protein 4

BMP15:

Bone morphogenic protein 15

COCs:

Cumulus-oocyte complexes

CTCF:

Corrected total cell fluorescence

FSH:

Follicle-stimulating hormone

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

GDF9:

Growth differentiation factor 9

GnRH:

Gonadotropin-releasing hormone

GV:

Germinal vesicle

GVs:

Germinal vesicles

hCG:

Human chorionic gonadotropin

HPRT1:

Hypoxanthine phosphoribosyltransferase 1

ICSI:

Intracytoplasmic sperm injection

IVF:

In vitro fertilization

IVM:

In vitro maturation

PCOS:

Polycystic ovaries syndrome

PGD:

Preimplantation genetic diagnosis

RT–qPCR:

Reverse-transcription quantitative real-time polymerase chain reaction

TGF-β:

Transforming growth factor-β

UBC:

Ubiquitin C

ZP:

Zona pellucida

ZP1:

Zona pellucida glycoprotein 1

ZP2:

Zona pellucida glycoprotein 2

ZP3:

Zona pellucida glycoprotein 3

ZP4:

Zona pellucida glycoprotein 4

References

  1. In vitro maturation: a committee opinion. Fertil Steril. 2021;115:298–304. https://doi.org/10.1016/j.fertnstert.2020.11.018

  2. Bedenk J, Režen T, Železnik Ramuta T, Jančar N, Vrtačnik Bokal E, Geršak K, Virant KI. Recombinant anti-Müllerian hormone in the maturation medium improves the in vitro maturation of human immature (GV) oocytes after controlled ovarian hormonal stimulation. Reprod Biol Endocrinol. 2022;20:18. https://doi.org/10.1186/s12958-022-00895-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Josso N, Picard JY, Rey R, di Clemente N. Testicular anti-Müllerian hormone: history, genetics, regulation and clinical applications. Pediatr Endocrinol Rev. 2006;3:347–58.

    PubMed  Google Scholar 

  4. Peluso C, Fonseca FLA, Rodart IF, Cavalcanti V, Gastaldo G, Christofolini DM, Barbosa CP, Bianco B. AMH: an ovarian reserve biomarker in assisted reproduction. Clin Chim Acta. 2014;437:175–82. https://doi.org/10.1016/j.cca.2014.07.029.

    Article  CAS  PubMed  Google Scholar 

  5. AbdelHafez FF, Tang Y, Hassan MH, Saleem TH. Assessment of Anti-Mullerian Hormone (AMH) levels in a pilot cohort of peripubertal females: correlation with sex maturity rating (SMR). Middle East Fertil Soc J. 2018;23:278–80. https://doi.org/10.1016/j.mefs.2018.01.004.

    Article  Google Scholar 

  6. Anderson RA. What does anti-Müllerian hormone tell you about ovarian function? Clin Endocrinol (Oxf). 2012;77:652–5. https://doi.org/10.1111/j.1365-2265.2012.04451.x.

    Article  CAS  PubMed  Google Scholar 

  7. Nyström A, Mörse H, Nordlöf H, Wiebe K, Artman M, Øra I, Giwercman A, Henic E, Elfving M. Anti-müllerian hormone compared with other ovarian markers after childhood cancer treatment. Acta Oncol. 2019;58:218–24. https://doi.org/10.1080/0284186X.2018.1529423.

    Article  PubMed  Google Scholar 

  8. Nair S, Slaughter JC, Terry JG, Appiah D, Ebong I, Wang E, Siscovick DS, Sternfeld B, Schreiner PJ, Lewis CE, Kabagambe EK, Wellons MF. Anti-mullerian hormone (AMH) is associated with natural menopause in a population-based sample: the CARDIA Women’s Study. Maturitas. 2015;81:493–8. https://doi.org/10.1016/j.maturitas.2015.06.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bolat SE, Ozdemirci S, Kasapoglu T, Duran B, Goktas L, Karahanoglu E. The effect of serum and follicular fluid anti-Mullerian hormone level on the number of oocytes retrieved and rate of fertilization and clinical pregnancy. North Clin Istanb. 2016;3:90–6. https://doi.org/10.14744/nci.2016.02418.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Dumont A, Robin G, Jonard S, Dewailly D. Role of anti-Müllerian hormone in pathophysiology, diagnosis and treatment of polycystic ovary syndrome: a review. Reprod Biol Endocrinol. 2015;13:. https://doi.org/10.1186/s12958-015-0134-9

  11. Islam Y, Aboulghar MM, AlEbrashy AE-D, Abdel-Aziz O. The value of different ovarian reserve tests in the prediction of ovarian response in patients with unexplained infertility. Middle East Fertil Soc J. 2016;21:69–74. https://doi.org/10.1016/j.mefs.2015.08.005.

    Article  Google Scholar 

  12. Lie Fong S, Visser JA, Welt CK, de Rijke YB, Eijkemans MJC, Broekmans FJ, Roes EM, Peters WHM, Hokken-Koelega ACS, Fauser BCJM, Themmen APN, de Jong FH, Schipper I, Laven JSE. Serum anti-müllerian hormone levels in healthy females: a nomogram ranging from infancy to adulthood. J Clin Endocrinol Metab. 2012;97:4650–5. https://doi.org/10.1210/jc.2012-1440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Webber L, Stubbs S, Stark J, Trew G, Margara R, Hardy K, Franks S. Formation and early development of follicles in the polycystic ovary. Lancet. 2003;362:1017–21. https://doi.org/10.1016/S0140-6736(03)14410-8.

    Article  CAS  PubMed  Google Scholar 

  14. Alebić MŠ, Stojanović N, Dewailly D. Discordance between serum anti-Müllerian hormone concentrations and antral follicle counts: not only technical issues. Hum Reprod. 2018;33:1141–8. https://doi.org/10.1093/humrep/dey098.

    Article  PubMed  Google Scholar 

  15. Knauff EAH, Eijkemans MJC, Lambalk CB, ten Kate-Booij MJ, Hoek A, Beerendonk CCM, Laven JSE, Goverde AJ, Broekmans FJM, Themmen APN, de Jong FH, Fauser BCJM. Anti-Müllerian hormone, inhibin B, and antral follicle count in young women with ovarian failure. J Clin Endocrinol Metab. 2009;94:786–92. https://doi.org/10.1210/jc.2008-1818.

    Article  CAS  PubMed  Google Scholar 

  16. Rashad NM, Moafy H, Saleh HS, Amin AI, Gomaa AF. Anti-Müllerian hormone: predictor of premature ovarian insufficiency in Egyptian women with autoimmune thyroiditis. Middle East Fertil Soc J. 2018;23:286–91. https://doi.org/10.1016/j.mefs.2018.01.012.

    Article  Google Scholar 

  17. Qin C, Yuan Z, Yao J, Zhu W, Wu W, Xie J. AMH and AMHR2 genetic variants in Chinese women with primary ovarian insufficiency and normal age at natural menopause. Reprod Biomed Online. 2014;29:311–8. https://doi.org/10.1016/j.rbmo.2014.05.003.

    Article  CAS  PubMed  Google Scholar 

  18. Kim C, Slaughter JC, Wang ET, Appiah D, Schreiner P, Leader B, Calderon-Margalit R, Sternfeld B, Siscovick D, Wellons M. Anti-Müllerian hormone, follicle stimulating hormone, antral follicle count, and risk of menopause within 5 years. Maturitas. 2017;102:18–25. https://doi.org/10.1016/j.maturitas.2017.04.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhang Y, Shao L, Xu Y, Cui Y, Liu J, Chian R-C. Effect of anti-Mullerian hormone in culture medium on quality of mouse oocytes matured in vitro. PLoS ONE. 2014;9:e99393. https://doi.org/10.1371/journal.pone.0099393.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kushnir VA, Seifer DB, Barad DH, Sen A, Gleicher N. Potential therapeutic applications of human anti-Müllerian hormone (AMH) analogues in reproductive medicine. J Assist Reprod Genet. 2017;34:1105–13. https://doi.org/10.1007/s10815-017-0977-4.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Hayes E, Kushnir V, Ma X, Biswas A, Prizant H, Gleicher N, Sen A. Intra-cellular mechanism of anti-Müllerian hormone (AMH) in regulation of follicular development. Mol Cell Endocrinol. 2016;433:56–65. https://doi.org/10.1016/j.mce.2016.05.019.

    Article  CAS  PubMed  Google Scholar 

  22. Pfennig F, Standke A, Gutzeit HO. The role of Amh signaling in teleost fish – multiple functions not restricted to the gonads. Gen Comp Endocrinol. 2015;223:87–107. https://doi.org/10.1016/j.ygcen.2015.09.025.

    Article  CAS  PubMed  Google Scholar 

  23. Juengel JL, McNatty KP. The role of proteins of the transforming growth factor-β superfamily in the intraovarian regulation of follicular development. Hum Reprod Update. 2005;11:144–61. https://doi.org/10.1093/humupd/dmh061.

    Article  CAS  Google Scholar 

  24. Knight PG, Glister C. TGF-β superfamily members and ovarian follicle development. Reproduction. 2006;132:191–206. https://doi.org/10.1530/rep.1.01074.

    Article  CAS  PubMed  Google Scholar 

  25. Gilchrist RB, Lane M, Thompson JG. Oocyte-secreted factors: regulators of cumulus cell function and oocyte quality. Hum Reprod Update. 2008;14:159–77. https://doi.org/10.1093/humupd/dmm040.

    Article  CAS  PubMed  Google Scholar 

  26. Pierre A, Estienne A, Racine C, Picard J-Y, Fanchin R, Lahoz B, Alabart JL, Folch J, Jarrier P, Fabre S, Monniaux D, di Clemente N. The bone morphogenetic protein 15 up-regulates the anti-Müllerian hormone receptor expression in granulosa cells. J Clin Endocrinol Metab. 2016;101:2602–11. https://doi.org/10.1210/jc.2015-4066.

    Article  CAS  PubMed  Google Scholar 

  27. McGrath SA, Esquela AF, Lee SJ. Oocyte-specific expression of growth/differentiation factor-9. Mol Endocrinol. 1995;9:131–6. https://doi.org/10.1210/mend.9.1.7760846.

    Article  CAS  PubMed  Google Scholar 

  28. Dube JL, Wang P, Elvin J, Lyons KM, Celeste AJ, Matzuk MM. The bone morphogenetic protein 15 gene is X-linked and expressed in oocytes. Mol Endocrinol. 1998;12:1809–17. https://doi.org/10.1210/mend.12.12.0206.

    Article  CAS  PubMed  Google Scholar 

  29. Cao Q, Zhao C, Zhang X, Zhang H, Lu Q, Wang C, Hu Y, Ling X, Zhang J, Huo R. Heterozygous mutations in ZP1 and ZP3 cause formation disorder of ZP and female infertility in human. J Cell Mol Med. 2020;24:8557–66. https://doi.org/10.1111/jcmm.15482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gupta SK, Bhandari B, Shrestha A, Biswal BK, Palaniappan C, Malhotra SS, Gupta N. Mammalian zona pellucida glycoproteins: structure and function during fertilization. Cell Tissue Res. 2012;349:665–78. https://doi.org/10.1007/s00441-011-1319-y.

    Article  CAS  PubMed  Google Scholar 

  31. Gupta SK, Bansal P, Ganguly A, Bhandari B, Chakrabarti K. Human zona pellucida glycoproteins: functional relevance during fertilization. J Reprod Immunol. 2009;83:50–5. https://doi.org/10.1016/j.jri.2009.07.008.

    Article  CAS  PubMed  Google Scholar 

  32. Litscher ES, Wassarman PM. Zona pellucida proteins, fibrils, and matrix. Annu Rev Biochem. 2020;89:695–715. https://doi.org/10.1146/annurev-biochem-011520-105310.

    Article  CAS  PubMed  Google Scholar 

  33. Costa J, Pereira R, Oliveira J, Alves Â, Marques-Magalhães Â, Frutuoso A, Leal C, Barros N, Fernandes R, Queiroz Almeida D, Barreiro M, Barros A, Sousa M, Sá R. Structural and molecular analysis of the cancer prostate cell line PC3: Oocyte zona pellucida glycoproteins. Tissue Cell. 2018;55:91–106. https://doi.org/10.1016/j.tice.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  34. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  35. Andersen CL, Jensen JL, Ørntoft TF. Normalization of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res. 2004;64:5245–50. https://doi.org/10.1158/0008-5472.CAN-04-0496.

    Article  CAS  PubMed  Google Scholar 

  36. The jamovi project. jamovi (Version 1.6) [Internet]. 2021. Available from: https://jamovi.org. Accessed 23 Sept 2021

  37. Jafari M, Ansari-Pour N. Why, When and how to adjust your P values? Cell J. 2019;20:604–7. https://doi.org/10.22074/cellj.2019.5992.

    Article  PubMed  Google Scholar 

  38. Wang S, Kou Z, Jing Z, Zhang Y, Guo X, Dong M, Wilmut I, Gao S. Proteome of mouse oocytes at different developmental stages. Proc Natl Acad Sci USA. 2010;107:17639–44. https://doi.org/10.1073/pnas.1013185107.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Virant-Klun I, Bauer C, Ståhlberg A, Kubista M, Skutella T. Human oocyte maturation in vitro is improved by co-culture with cumulus cells from mature oocytes. Reprod Biomed Online. 2018;36:508–23. https://doi.org/10.1016/j.rbmo.2018.01.011.

    Article  PubMed  Google Scholar 

  40. Llonch S, Barragán M, Nieto P, Mallol A, Elosua-Bayes M, Lorden P, Ruiz S, Zambelli F, Heyn H, Vassena R, Payer B. Single human oocyte transcriptome analysis reveals distinct maturation stage-dependent pathways impacted by age. Aging Cell. 2021;20:e13360. https://doi.org/10.1111/acel.13360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lim M, Brown HM, Rose RD, Thompson JG, Dunning KR. Dysregulation of bisphosphoglycerate mutase during in vitro maturation of oocytes. J Assist Reprod Genet. 2021;38:1363–72. https://doi.org/10.1007/s10815-021-02230-0.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Yang Z-Y, Ye M, Xing Y-X, Xie Q-G, Zhou J-H, Qi X-R, Kee K, Chian R-C. Changes in the mitochondria-related nuclear gene expression profile during human oocyte maturation by the IVM technique. Cells. 2022;11:297. https://doi.org/10.3390/cells11020297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Hao Y, Zhang Z, Han D, Cao Y, Zhou P, Wei Z, Lv M, Chen D. Gene expression profiling of human blastocysts from in vivo and ‘rescue IVM’ with or without melatonin treatment. Mol Med Rep. 2017;16:1278–88. https://doi.org/10.3892/mmr.2017.6742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Li J, Lu M, Zhang P, Hou E, Li T, Liu X, Xu X, Wang Z, Fan Y, Zhen X, Li R, Liu P, Yu Y, Hang J, Qiao J. Aberrant spliceosome expression and altered alternative splicing events correlate with maturation deficiency in human oocytes. Cell Cycle. 2020;19:2182–94. https://doi.org/10.1080/15384101.2020.1799295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Saenz-de-Juano MD, Ivanova E, Romero S, Lolicato F, Sánchez F, Van Ranst H, Krueger F, Segonds-Pichon A, De Vos M, Andrews S, Smitz J, Kelsey G, Anckaert E. DNA methylation and mRNA expression of imprinted genes in blastocysts derived from an improved in vitro maturation method for oocytes from small antral follicles in polycystic ovary syndrome patients. Hum Reprod. 2019;34:1640–9. https://doi.org/10.1093/humrep/dez121.

    Article  CAS  PubMed  Google Scholar 

  46. Liu W, Li K, Bai D, Yin J, Tang Y, Chi F, Zhang L, Wang Y, Pan J, Liang S, Guo Y, Ruan J, Kou X, Zhao Y, Wang H, Chen J, Teng X, Gao S. Dosage effects of ZP2 and ZP3 heterozygous mutations cause human infertility. Hum Genet. 2017;136:975–85. https://doi.org/10.1007/s00439-017-1822-7.

    Article  CAS  PubMed  Google Scholar 

  47. Dai C, Chen Y, Hu L, Du J, Gong F, Dai J, Zhang S, Wang M, Chen J, Guo J, Zheng W, Lu C, Wu Y, Lu G, Lin G. ZP1 mutations are associated with empty follicle syndrome: evidence for the existence of an intact oocyte and a zona pellucida in follicles up to the early antral stage. A case report Hum Reprod. 2019;34:2201–7. https://doi.org/10.1093/humrep/dez174.

    Article  PubMed  Google Scholar 

  48. Dai C, Hu L, Gong F, Tan Y, Cai S, Zhang S, Dai J, Lu C, Chen J, Chen Y, Lu G, Du J, Lin G. ZP2 pathogenic variants cause in vitro fertilization failure and female infertility. Genet Med. 2019;21:431–40. https://doi.org/10.1038/s41436-018-0064-y.

    Article  CAS  PubMed  Google Scholar 

  49. Zhou Z, Ni C, Wu L, Chen B, Xu Y, Zhang Z, Mu J, Li B, Yan Z, Fu J, Wang W, Zhao L, Dong J, Sun X, Kuang Y, Sang Q, Wang L. Novel mutations in ZP1, ZP2, and ZP3 cause female infertility due to abnormal zona pellucida formation. Hum Genet. 2019;138:327–37. https://doi.org/10.1007/s00439-019-01990-1.

    Article  CAS  PubMed  Google Scholar 

  50. Luo G, Zhu L, Liu Z, Yang X, Xi Q, Li Z, Duan J, Jin L, Zhang X. Novel mutations in ZP1 and ZP2 cause primary infertility due to empty follicle syndrome and abnormal zona pellucida. J Assist Reprod Genet. 2020;37:2853–60. https://doi.org/10.1007/s10815-020-01926-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all colleagues at the IVF Unit (gynecologists, embryologists, and nurses) of University Medical Centre Ljubljana, the patients who kindly donated their oocytes for this research, and all others who contributed to this work.

Funding

The authors acknowledge the financial support from the Slovenian Research Agency (research core funding no. P3-0124, no. P1-0390, and no. J3-2530 and young researcher scholarship for Jure Bedenk).

Author information

Authors and Affiliations

Authors

Contributions

J.B. performed most of the experiments, performed most of the data analysis, and wrote the manuscript. T.R. performed part of the experiments (gene expression analysis) and part of the data analysis. N.J. performed ovarian stimulation and oocyte collection. K.G. performed part of the experiments. I.V.K. contributed to the idea and study design, performed part of the experiments, gave guidance and suggestions, and performed supervision. All authors contributed toward the drafting and revision of the paper and gave final approval of the version to be published.

Corresponding author

Correspondence to Jure Bedenk.

Ethics declarations

Ethics Approval

Ethics were approved by the Republic of Slovenia National Medical Ethics Committee with the trial number 0120–546/208/6.

Consent to Participate

All participants in the study gave written informed consent for using their oocytes in this study.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

This article was updated to correct the tagging of Irma Virant Klun's name.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 844 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedenk, J., Režen, T., Jančar, N. et al. Effect of In Vitro Maturation of Human Oocytes Obtained After Controlled Ovarian Hormonal Stimulation on the Expression of Development- and Zona Pellucida-Related Genes and Their Interactions. Reprod. Sci. 30, 667–677 (2023). https://doi.org/10.1007/s43032-022-01047-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01047-1

Keywords

Navigation