Skip to main content

Advertisement

Log in

E2F Transcription Factor 1 Activates FKBP Prolyl Isomerase 4 to Promote Angiogenesis in Cervical Squamous Cell Carcinoma Via the PI3K/AKT Signaling Pathway

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Angiogenesis, namely the formation of blood vessels, is crucial for tumor growth, metastasis and development. E2F transcription factor 1 (E2F1) has been linked to tumorigenesis in several human cancers. This work examines the role of E2F1 and its downstream targets in angiogenesis in cervical squamous cell carcinoma (CSCC). E2F1 was predicted as a candidate oncogene in CSCC using a GSE63514 dataset. Increased E2F1 expression was detected in CSCC tumor samples and cell lines by RT-qPCR, immunohistochemistry, and western blot assays. E2F1 downregulation reduced the angiogenesis activity of HUVECs and the invasiveness of CSCC cells. In vivo, E2F1 knockdown also reduced the xenograft tumor growth and promoted tumor necrosis in mice. FKBP prolyl isomerase 4 (FKBP4) was identified as a target of E2F1. E2F1 bound to FKBP4 promoter for transcriptional activation. Further upregulation of FKBP4 blocked the tumor-suppressive role of E2F1 silencing. FKBP4 was enriched in the PI3K/AKT signaling. In cells and xenograft tumors, the E2F1/FKBP4 axis promoted PI3K and AKT phosphorylation. Activation of the PI3K/AKT signaling restored the angiogenesis activity in cells blocked by E2F1 silencing. In summary, this work demonstrates that E2F1 promotes FKBP4 transcription to activate the PI3K/AKT pathway, which augments the angiogenesis and invasiveness of CSCC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated and/or analyzed during the current study are not publicly available due research design but are available from the corresponding author on reasonable request.

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424.

    Article  PubMed  Google Scholar 

  2. Crosbie EJ, Einstein MH, Franceschi S, Kitchener HC. Human papillomavirus and cervical cancer. Lancet. 2013;382(9895):889–99.

    Article  PubMed  Google Scholar 

  3. Olusola P, Banerjee HN, Philley JV, Dasgupta S. Human papilloma virus-associated cervical cancer and health disparities. Cells. 2019;8:6.

    Article  Google Scholar 

  4. Balasubramaniam SD, Balakrishnan V, Oon CE, Kaur G. Key molecular events in cervical cancer development. Medicina (Kaunas). 2019;55:7.

    Google Scholar 

  5. Wang X, Cao A, Hou Z, Li X, Gao B. Identification of key classification features of early cervical squamous cell carcinoma. Comput Biol Chem. 2021;93:107531.

    Article  CAS  PubMed  Google Scholar 

  6. Li H, Wu X, Cheng X. Advances in diagnosis and treatment of metastatic cervical cancer. J Gynecol Oncol. 2016;27(4):e43.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, et al. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer. 2013;49(6):1374–403.

    Article  CAS  PubMed  Google Scholar 

  8. Tewari KS, Sill MW, Long HJ 3rd, Penson RT, Huang H, Ramondetta LM, et al. Improved survival with bevacizumab in advanced cervical cancer. N Engl J Med. 2014;370(8):734–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Sozzani R, Maggio C, Varotto S, Canova S, Bergounioux C, Albani D, et al. Interplay between Arabidopsis activating factors E2Fb and E2Fa in cell cycle progression and development. Plant Physiol. 2006;140(4):1355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun CC, Li SJ, Hu W, Zhang J, Zhou Q, Liu C, et al. Comprehensive analysis of the expression and prognosis for E2Fs in human breast cancer. Mol Ther. 2019;27(6):1153–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Gaubatz S, Lindeman GJ, Ishida S, Jakoi L, Nevins JR, Livingston DM, et al. E2F4 and E2F5 play an essential role in pocket protein-mediated G1 control. Mol Cell. 2000;6(3):729–35.

    Article  CAS  PubMed  Google Scholar 

  12. Mun JY, Baek SW, Park WY, Kim WT, Kim SK, Roh YG, et al. E2F1 promotes progression of bladder cancer by modulating RAD54L involved in homologous recombination repair. Int J Mol Sci. 2020;21:23.

    Article  Google Scholar 

  13. Swiatnicki MR, Andrechek ER. Metastasis is altered through multiple processes regulated by the E2F1 transcription factor. Sci Rep. 2021;11(1):9502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ertosun MG, Hapil FZ, Osman NO. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev. 2016;31:17–25.

    Article  PubMed  Google Scholar 

  15. Manickavinayaham S, Velez-Cruz R, Biswas AK, Chen J, Guo R, Johnson DG. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle. 2020;19(18):2260–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Santos M, Martinez-Fernandez M, Duenas M, Garcia-Escudero R, Alfaya B, Villacampa F, et al. In vivo disruption of an Rb-E2F-Ezh2 signaling loop causes bladder cancer. Cancer Res. 2014;74(22):6565–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Shackney SE, Chowdhury SA, Schwartz R. A novel subset of human tumors that simultaneously overexpress multiple E2F-responsive genes found in breast, ovarian, and prostate cancers. Cancer Inform. 2014;13(Suppl 5):89–100.

    PubMed  PubMed Central  Google Scholar 

  18. Tu S, Zhang H, Yang X, Wen W, Song K, Yu X, et al. Screening of cervical cancer-related hub genes based on comprehensive bioinformatics analysis. Cancer Biomark. 2021;32(3):303–15.

    Article  CAS  PubMed  Google Scholar 

  19. Meng W, Meng J, Jiang H, Feng X, Wei D, Ding Q. FKBP4 accelerates malignant progression of non-small-cell lung cancer by activating the Akt/mTOR signaling pathway. Anal Cell Pathol (Amst). 2020;2020:6021602.

    PubMed  Google Scholar 

  20. Yang WS, Moon HG, Kim HS, Choi EJ, Yu MH, Noh DY, et al. Proteomic approach reveals FKBP4 and S100A9 as potential prediction markers of therapeutic response to neoadjuvant chemotherapy in patients with breast cancer. J Proteome Res. 2012;11(2):1078–88.

    Article  CAS  PubMed  Google Scholar 

  21. Zong S, Jiao Y, Liu X, Mu W, Yuan X, Qu Y, et al. FKBP4 integrates FKBP4/Hsp90/IKK with FKBP4/Hsp70/RelA complex to promote lung adenocarcinoma progression via IKK/NF-kappaB signaling. Cell Death Dis. 2021;12(6):602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mange A, Coyaud E, Desmetz C, Laurent E, Beganton B, Coopman P, et al. FKBP4 connects mTORC2 and PI3K to activate the PDK1/Akt-dependent cell proliferation signaling in breast cancer. Theranostics. 2019;9(23):7003–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Karar J, Maity A. PI3K/AKT/mTOR pathway in angiogenesis. Front Mol Neurosci. 2011;4:51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gaffney DK, Hashibe M, Kepka D, Maurer KA, Werner TL. Too many women are dying from cervix cancer: problems and solutions. Gynecol Oncol. 2018;151(3):547–54.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simms KT, Steinberg J, Caruana M, Smith MA, Lew JB, Soerjomataram I, et al. Impact of scaled up human papillomavirus vaccination and cervical screening and the potential for global elimination of cervical cancer in 181 countries, 2020–99: a modelling study. Lancet Oncol. 2019;20(3):394–407.

    Article  PubMed  Google Scholar 

  26. Fang Z, Gong C, Yu S, Zhou W, Hassan W, Li H, et al. NFYB-induced high expression of E2F1 contributes to oxaliplatin resistance in colorectal cancer via the enhancement of CHK1 signaling. Cancer Lett. 2018;415:58–72.

    Article  CAS  PubMed  Google Scholar 

  27. Su F, He W, Chen C, Liu M, Liu H, Xue F, et al. The long non-coding RNA FOXD2-AS1 promotes bladder cancer progression and recurrence through a positive feedback loop with Akt and E2F1. Cell Death Dis. 2018;9(2):233.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zou D, Dong L, Li C, Yin Z, Rao S, Zhou Q. The m(6)A eraser FTO facilitates proliferation and migration of human cervical cancer cells. Cancer Cell Int. 2019;19:321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yang C, Zhang ZC, Liu TB, Xu Y, Xia BR, Lou G. E2F1/2/7/8 as independent indicators of survival in patients with cervical squamous cell carcinoma. Cancer Cell Int. 2020;20:500.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Tian S, Zhang L, Li Y, Cao D, Quan S, Guo Y, et al. Human papillomavirus E7 oncoprotein promotes proliferation and migration through the transcription factor E2F1 in cervical cancer cells. Anticancer Agents Med Chem. 2021;21(13):1689–96.

    Article  CAS  PubMed  Google Scholar 

  31. Wang M, Qiao X, Cooper T, Pan W, Liu L, Hayball J, et al. HPV E7-mediated NCAPH ectopic expression regulates the carcinogenesis of cervical carcinoma via PI3K/AKT/SGK pathway. Cell Death Dis. 2020;11(12):1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Engelmann D, Mayoli-Nussle D, Mayrhofer C, Furst K, Alla V, Stoll A, et al. E2F1 promotes angiogenesis through the VEGF-C/VEGFR-3 axis in a feedback loop for cooperative induction of PDGF-B. J Mol Cell Biol. 2013;5(6):391–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Qin G, Kishore R, Dolan CM, Silver M, Wecker A, Luedemann CN, et al. Cell cycle regulator E2F1 modulates angiogenesis via p53-dependent transcriptional control of VEGF. Proc Natl Acad Sci U S A. 2006;103(29):11015–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Tasev D, Konijnenberg LS, Amado-Azevedo J, van Wijhe MH, Koolwijk P, van Hinsbergh VW. CD34 expression modulates tube-forming capacity and barrier properties of peripheral blood-derived endothelial colony-forming cells (ECFCs). Angiogenesis. 2016;19(3):325–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Su K, Lin N, Xie S, Han Y, Yang Z, Zhang H, et al. DNMT3A inhibits E2F1-induced arterial marker expression and impairs angiogenesis in human umbilical artery endothelial cells. Acta Biochim Biophys Sin (Shanghai). 2020;52(11):1236–46.

    Article  CAS  PubMed  Google Scholar 

  36. Storer CL, Dickey CA, Galigniana MD, Rein T, Cox MB. FKBP51 and FKBP52 in signaling and disease. Trends Endocrinol Metab. 2011;22(12):481–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tong J, Shen Y, Chen X, Wang R, Hu Y, Zhang X, et al. FKBP3 mediates oxaliplatin resistance in colorectal cancer cells by regulating HDAC2 expression. Oncol Rep. 2019;42(4):1404–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhang W, Xiong Z, Wei T, Li Q, Tan Y, Ling L, et al. Nuclear factor 90 promotes angiogenesis by regulating HIF-1alpha/VEGF-A expression through the PI3K/Akt signaling pathway in human cervical cancer. Cell Death Dis. 2018;9(3):276.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

JZH contribute to study concepts, study design, experimental studies, manuscript preparation, and editing; YZ contribute to experimental studies, manuscript preparation, and editing. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Ying Zhao.

Ethics declarations

Ethics Approval

This research got the approval of the Ethics Committee of the Second Affiliated Hospital of Dalian Medical University and abided by the Declaration of Helsinki. Signed informed consent was received from each participant. The use of animals was approved by the Animal Ethics Committee of the Second Affiliated Hospital of Dalian Medical University. All procedures were performed adhering to the tenets of the Guide for the Care and Use of Laboratory Animals (NIH Publication No. 85–23, revised 1996).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, J., Zhao, Y. E2F Transcription Factor 1 Activates FKBP Prolyl Isomerase 4 to Promote Angiogenesis in Cervical Squamous Cell Carcinoma Via the PI3K/AKT Signaling Pathway. Reprod. Sci. 30, 1229–1240 (2023). https://doi.org/10.1007/s43032-022-01034-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-01034-6

Keywords

Navigation