Skip to main content

Advertisement

Log in

Sex-Selective Increase of IGF-2 Expression in the Hypoxic Guinea Pig Placenta of Growth-Restricted Fetuses

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Chronic hypoxia can cause fetal growth restriction (FGR) through placental dysfunction. Insulin-like growth factors (IGFs), such as IGF-2, play a major role in preservation of placental growth and function. We investigated the effects of chronic hypoxia and sex on protein expression of the IGF-2 pathway in placentas selected from asymmetric-FGR fetuses. Time-mated pregnant guinea pigs were assigned to normoxia (NMX, 21% O2) or hypoxia (HPX, 10.5% O2) during the last 14 days of pregnancy. Placentas were selected from male and female symmetrically grown NMX fetuses (fetal wt between 25th ile–75th ile) and HPX fetuses of asymmetric-FGR (fetal wt < 25th ile and brain:liver wt > 50th ile). Effects of HPX and sex on placenta protein expression of the IGF-2 signaling proteins (IGF-2, PI3K, AKT-P, total AKT, PCNA, a cell proliferation marker) were evaluated by immunoblotting. Effects of HPX and sex on morphometric parameters were analyzed using two-way ANOVA (p < 0.05). HPX reduced (p < 0.005) fetal wt by ~ 35% compared to NMX in both sexes. Expression of IGF-2 was lower (p = 0.029) in NMX female placentas compared to males. Despite lower NMX levels, HPX increased (p < 0.05) expression of IGF-2, AKT-P, relative AKT-P, and PCNA in female placentas only and had no effect on protein expression in male placentas. The female guinea pig placenta exhibits a greater sensitivity than males to HPX in upregulating expression of the IGF-2 axis. In addition, the sex difference in baseline IGF-2 expression suggests a greater capacity for females to increase IGF-2 in response to HPX as a placental adaptation in FGR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gordijn SJ, Beune IM, Thilaganatha B, Papageorghiou A, Baschat AA, Baker PN, Silver RM, Wynia K, Ganzevoort W. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–9. https://doi.org/10.1002/uog.15884.

    Article  CAS  PubMed  Google Scholar 

  2. Burton, GJ, Fowden AL. Review: the placenta and developmental programming: balancing fetal nutrient demands with maternal resource allocation. Placenta, 2012; S23–7 https://doi.org/10.1016/j.placenta.2011.11.013

  3. Vaughan OR, Sferruzzi-Perri AN, Coan PM, Fowden AL. Environmental regulation of placental phenotype: implications for fetal growth. Reprod Fertil Dev. 2011;24(1):80–96. https://doi.org/10.1071/RD11909.

    Article  CAS  PubMed  Google Scholar 

  4. Parraguez VH, Atlagich M, Diaz R, Cepeda R, Gonzalez C, Reyes MD, Bruzzone ME, Behn C, Raggi LA. Ovine placenta at high altitudes: comparison of animals with different times of adaptation to hypoxic environment. Anim Reprod Sci. 2006;95(1–2):151–7. https://doi.org/10.1016/j.anireprosci.2005.11.003.

    Article  PubMed  Google Scholar 

  5. Jansson N, Pettersson J, Haffiz A, Erricson A, Palmberg I, Tranberg M, Ganapathy V, Powell TL, Jansson T. Down-regulation of placental transport of amino acids precedes the development of intrauterine growth restriction in rats fed a low protein diet. J Physiol. 2006;576(Pt 3):935–46. https://doi.org/10.1113/jphysiol.2006.116509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Nardozza LM, Caetano AC, Zamarian AC, Mazzola JB, Silva CP, Marcal VM, Lobo TF, Peixoto AB, Junior EA. Fetal growth restriction: current knowledge. Arch Gynecol Obstet. 2017;295(5):1061–77. https://doi.org/10.1007/s00404-017-4341-9.

    Article  PubMed  Google Scholar 

  7. Soares MJ, Iqbal K, Kozai K. Hypoxia and placental development. Birth Defects Res. 2017;109(17):1309–29. https://doi.org/10.1002/bdr2.1135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Semenza GL. Oxygen homeostasis. Wiley Interdiscip Rev Syst Biol Med. 2010;2(3):336–61. https://doi.org/10.1056/NEJMra1011165.

    Article  CAS  PubMed  Google Scholar 

  9. Hutter D, Kingdom J, Jaeggi E. Causes and mechanisms of intrauterine hypoxia and its impact on the fetal cardiovascular system: a review. Int J Pediatr. 2010;2010:4013–23. https://doi.org/10.1155/2010/401323.

    Article  Google Scholar 

  10. Börzsönyi B, Demendi C, Nagy Z, Toth K, Csanad M, Pajor A, Rig J, Joo JG. Gene expression patterns of insulin-like growth factor 1, insulin-like growth factor 2 and insulin-like growth factor binding protein 3 in human placenta from pregnancies with intrauterine growth restriction. J Perinat Med. 2011;39(6):701–7. https://doi.org/10.1515/jpm.2011.090.

    Article  PubMed  Google Scholar 

  11. Baker J, Liu JP, Robertson EJ, Efstratiadis A. Role of insulin-like growth factors in embryonic and postnatal growth. Cell. 1993;75(1):73–82. https://doi.org/10.1016/S0092-8674(05)80085-6

  12. Powell-Braxton L, Hollingshead P, Warburton C, Dowd M, Pitts-Meek S, Dalton D, Gillett N, Stewart TA. IGF-I is required for normal embryonic growth in mice. Genes Dev. 1993;7(12B):2609–17. https://doi.org/10.1101/gad.7.12b.2609.

    Article  CAS  PubMed  Google Scholar 

  13. DeChiara TM, Efstratiadis A, Robertson EJ. A growth-deficiency phenotype in heterozygous mice carrying an insulin-like growth factor II gene disrupted by targeting. Nature. 1990;345(6270):78–80. https://doi.org/10.1038/345078a0.

    Article  CAS  PubMed  Google Scholar 

  14. Sheikh S, Satoskar P, Bhartiya D. Expression of insulin-like growth factor-I and placental growth hormone mRNA in placentae: a comparison between normal and intrauterine growth retardation pregnancies. Mol Hum Reprod. 2001;7(3):287–92. https://doi.org/10.1093/molehr/7.3.287.

    Article  CAS  PubMed  Google Scholar 

  15. Abu-Amero SN, Ali Z, Bennett P, Vaughan JI, Moore GE. Expression of the insulin-like growth factors and their receptors in term placentas: a comparison between normal and IUGR births. Mol Reprod Dev. 1998;49(3):229–35. https://doi.org/10.1002/(SICI)1098-2795(199803)49:3%3c229::AID-MRD2%3e3.0.CO;2-Q.

    Article  CAS  PubMed  Google Scholar 

  16. Calvo MT, Romo A, Gutierrez JJ, Relano E, Barrio E, Longas AF. Study of genetic expression of intrauterine growth factors IGF-I and EGFR in placental tissue from pregnancies with intrauterine growth retardation. J Pediatr Endocrinol Metab. 2004;17(Suppl 3):445–50. https://doi.org/10.1186/s13148-016-0178-5

  17. Koukoura O, Sifakis S, Soufla G, Zaravinos A, Apostolidou S, Jones A, Widschwendter M, Spandidos DA. Loss of imprinting and aberrant methylation of IGF2 in placentas from pregnancies complicated with fetal growth restriction. Int J Mol Med. 2011;28(4):481–7. https://doi.org/10.3892/ijmm.2011.754.

    Article  CAS  PubMed  Google Scholar 

  18. Vincent AM, Feldman EL. Control of cell survival by IGF signaling pathways. Growth Horm IGF Res. 2002;12(4):193–7. https://doi.org/10.1016/S1096-6374(02)00017-5.

    Article  CAS  PubMed  Google Scholar 

  19. Daoud G, Amyot M, Rassart E, Masse A, Simoneau L, Lafond J. ERK1/2 and p38 regulate trophoblasts differentiation in human term placenta. J Physiol. 2005;566(Pt 2):409–23. https://doi.org/10.1113/jphysiol.2005.089326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chen J, Yue C, Xu J, Zhan Y, Zhao H, Li Y, Ye Y. Downregulation of receptor tyrosine kinase-like orphan receptor 1 in preeclampsia placenta inhibits human trophoblast cell proliferation, migration, and invasion by PI3K/AKT/mTOR pathway accommodation. Placenta. 2019;82:17–24. https://doi.org/10.1016/j.placenta.2019.05.002.

    Article  CAS  PubMed  Google Scholar 

  21. Diaz LE, Chuan YC, Lewitt M, Fernandez-Perez L, Carrasco-Rodriguez S, Sanchez-Gomez M, Flores-Morales A. IGF-II regulates metastatic properties of choriocarcinoma cells through the activation of the insulin receptor. Mol Hum Reprod. 2007;13(8):567–76. https://doi.org/10.1093/molehr/gam039.

    Article  CAS  PubMed  Google Scholar 

  22. Ain R, Canham LN, Soares MJ. Dexamethasone-induced intrauterine growth restriction impacts the placental prolactin family, insulin-like growth factor-II and the Akt signaling pathway. J Endocrinol. 2005;185(2):253–63. https://doi.org/10.1677/joe.1.06039.

    Article  CAS  PubMed  Google Scholar 

  23. Higgins JS, Vaughan OR, de Fernandez Liger E, Fowden AL, Sferruzzi-Perri AN. Placental phenotype and resource allocation to fetal growth are modified by the timing and degree of hypoxia during mouse pregnancy. J Physiol. 2016;594(5):1341–56. https://doi.org/10.1113/JP271057.

    Article  CAS  PubMed  Google Scholar 

  24. Trollmann R, Klingmuller K, Schild RL, Rascher W, Dotsch J. Differential gene expression of somatotrophic and growth factors in response to in vivo hypoxia in human placenta. Am J Obstet Gynecol. 2007;197(6):601.e1-6. https://doi.org/10.1016/j.ajog.2007.04.008.

    Article  CAS  Google Scholar 

  25. Sferruzzi-Perri AN. Regulating needs: exploring the role of insulin-like growth factor-2 signalling in materno-fetal resource allocation. Placenta. 2018;64(Suppl 1):S16–22. https://doi.org/10.1016/j.placenta.2018.01.005.

    Article  CAS  PubMed  Google Scholar 

  26. Matthews PJ, Jackson J. Pregnancy diagnosis in the guinea pig. Lab Anim Sci. 1977;27(2):248–50.

  27. Thompson LP, Dong Y, Evans L. Chronic hypoxia increases inducible NOS-derived nitric oxide in fetal guinea pig hearts. Pediatr Res. 2009;65(2):188–92. https://doi.org/10.1203/PDR.0b013e31818d6ad0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Oh C, Dong Y, Liu H, Thompson LP. Intrauterine hypoxia upregulates proinflammatory cytokines and matrix metalloproteinases in fetal guinea pig hearts. Am J Obstet Gynecol. 2008;199(1):78.e1-6. https://doi.org/10.1016/j.ajog.2007.12.004.

    Article  CAS  Google Scholar 

  29. Turan S, Aberdeen GW, Thompson LP. Chronic hypoxia alters maternal uterine and fetal hemodynamics in the full-term pregnant guinea pig. Am J Physiol Regul Integr Comp Physiol. 2017;313(4):R330–9. https://doi.org/10.1152/ajpregu.00056.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Coan PM, Angiolini E, Sandovici I, Burton GJ, Costancia M. Fowden AL Adaptations in placental nutrient transfer capacity to meet fetal growth demands depend on placental size in mice. J Physiol. 2008;586(18):4567–76. https://doi.org/10.1113/jphysiol.2008.156133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Elias AA, Ghaly A, Matushewski B, Regnault TRH. Richardson, Maternal nutrient restriction in guinea pigs as an animal model for inducing fetal growth restriction. Reprod Sci. 2016;23(2):219–27. https://doi.org/10.1177/1933719115602773.

    Article  CAS  PubMed  Google Scholar 

  32. Ghaly A, Maki Y, Nygard K, Hammond R, Hardy DB, Richardson BS. Maternal nutrient restriction in guinea pigs leads to fetal growth restriction with increased brain apoptosis. Pediatr Res. 2019;85(1):105–12. https://doi.org/10.1038/s41390-018-0230-6.

    Article  CAS  PubMed  Google Scholar 

  33. Song H, Telugu BP, Thompson LP. Sexual dimorphism of mitochondrial function in the hypoxic guinea pig placenta. Biol Reprod. 2019;100(1):208–16. https://doi.org/10.1093/biolre/ioy167.

    Article  PubMed  Google Scholar 

  34. Carter AM, Kingston MJ, Han KK, Mazzuca DM, Nygard K, Han VK. Altered expression of IGFs and IGF-binding proteins during intrauterine growth restriction in guinea pigs. J Endocrinol. 2005;184(1):179–89. https://doi.org/10.1677/joe.1.05781.

    Article  CAS  PubMed  Google Scholar 

  35. Coan PM, Vaughan OR, Sekita Y, Finn SL, Burton GJ, Costancia M, Fowden AL. Adaptations in placental phenotype support fetal growth during undernutrition of pregnant mice. J Physiol. 2010;588(Pt 3):527–38. https://doi.org/10.1113/jphysiol.2009.181214.

    Article  CAS  PubMed  Google Scholar 

  36. Constância M, Angiolini E, Sandovici I, Smith P, Smith R, Kelsey G, Dean W, Ferguson-Smith A, Sibley C, Reik W, Fowden AL. Adaptation of nutrient supply to fetal demand in the mouse involves interaction between the Igf2 gene and placental transporter systems. Proc Natl Acad Sci U S A. 2005;102(52):19219–24. https://doi.org/10.1073/pnas.0504468103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Gratton RJ, Asano H, Han VK. The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of women with pre-eclampsia. Placenta. 2002;23(4):303–10. https://doi.org/10.1053/plac.2001.0780.

    Article  CAS  PubMed  Google Scholar 

  38. Sferruzzi-Perri AN, Vaughan OR, Coan PM, Suciu MC, Darbyshire R, Constancia M, Burton GJ, Fowden AL. Placental-specific Igf2 deficiency alters developmental adaptations to undernutrition in mice. Endocrinology. 2011;152(8):3202–12. https://doi.org/10.1210/en.2011-0240.

    Article  CAS  PubMed  Google Scholar 

  39. Han VK, Bassett N, Walton J, Challis JR. The expression of insulin-like growth factor (IGF) and IGF-binding protein (IGFBP) genes in the human placenta and membranes: evidence for IGF-IGFBP interactions at the feto-maternal interface. J Clin Endocrinol Metab. 1996;81(7):2680–93. https://doi.org/10.1210/jcem.81.7.8675597.

    Article  CAS  PubMed  Google Scholar 

  40. Kind KL, Roberts CT, Sohlstrom AI, Katsman A, Clifton PM, Robinson JS, Owens JA. Chronic maternal feed restriction impairs growth but increases adiposity of the fetal guinea pig. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R119–26. https://doi.org/10.1152/ajpregu.00360.2004.

    Article  CAS  PubMed  Google Scholar 

  41. Roberts CT, Sohlstrom AI, Kind KL, Earl RA, Khong TY, Robinson JS, Owens PC, Owens JA. Maternal food restriction reduces the exchange surface area and increases the barrier thickness of the placenta in the guinea-pig. Placenta. 2001;22(2–3):177–85. https://doi.org/10.1053/plac.2000.0602.

    Article  CAS  PubMed  Google Scholar 

  42. Sharma D, Shastri S, Farahbakhsh N, Sharma P. Intrauterine growth restriction - part 1. J Matern Fetal Neonatal Med. 2016;29(24):3977–87. https://doi.org/10.3109/14767058.2016.1152249.

    Article  PubMed  Google Scholar 

  43. Sharma D, Shastri S, Farahbakhsh N, Sharma P. Intrauterine growth restriction - part 2. J Matern Fetal Neonatal Med. 2016;29(24):4037–48. https://doi.org/10.3109/14767058.2016.1154525.

    Article  PubMed  Google Scholar 

  44. Feldser D, Agani F, Iyer NV, Pak B, Ferriera G, Semenza GL. Reciprocal positive regulation of hypoxia-inducible factor 1alpha and insulin-like growth factor 2. Cancer Res. 1999;59(16):3915–8.

    CAS  PubMed  Google Scholar 

  45. Semenza GL. Hypoxia-inducible factor 1: master regulator of O2 homeostasis. Curr Opin Genet Dev. 1998;8(5):588–94. https://doi.org/10.1016/S0959-437X(98)80016-6.

    Article  CAS  PubMed  Google Scholar 

  46. Pringle KG, Kind KL, Thompson JG, Roberts CT. Complex interactions between hypoxia inducible factors, insulin-like growth factor-II and oxygen in early murine trophoblasts. Placenta. 2007;28(11–12):1147–57. https://doi.org/10.1016/j.placenta.2007.05.009.

    Article  CAS  PubMed  Google Scholar 

  47. Kent LN, Ohboshi S, Soares MJ. Akt1 and insulin-like growth factor 2 (Igf2) regulate placentation and fetal/postnatal development. Int J Dev Biol. 2012;56(4):255–61. https://doi.org/10.1387/ijdb.113407lk.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Yang ZZ, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings BA. Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem. 2003;278(34):32124–31. https://doi.org/10.1074/jbc.M302847200.

    Article  CAS  PubMed  Google Scholar 

  49. Foukas LC, Claret M, Pearce W, Okkenhaug K, Meek S, Peskett E, Sancho S, Smith AJ, Withers DJ, Vanhaeebroeck B. Critical role for the p110alpha phosphoinositide-3-OH kinase in growth and metabolic regulation. Nature. 2006;441(7091):366–70. https://doi.org/10.1038/nature04694.

    Article  CAS  PubMed  Google Scholar 

  50. Sferruzzi-Perri AN, Lopez-Tello J, Fowden AL, Constancia M. Maternal and fetal genomes interplay through phosphoinositol 3-kinase(PI3K)-p110α signaling to modify placental resource allocation. Proc Natl Acad Sci U S A. 2016;113(40):11255–60. https://doi.org/10.1073/pnas.1602012113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Thompson LP, Pence L, Pinkas G, Song H, Telugu B. Placental hypoxia during early pregnancy causes maternal hypertension and placental insufficiency in the hypoxic guinea pig model. Biol Reprod. 2016;95(6):128. https://doi.org/10.1095/biolreprod.116.142273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhang MS, Hu AH, Qiu H, Xiong HH, Chen Y. The correlation between IGF-II and Bcl-2 expression in colorectal adenocarcinoma. Med Oncol. 2012;29(2):928–32. https://doi.org/10.1007/s12032-011-9881-4.

    Article  CAS  PubMed  Google Scholar 

  53. Kuang RG, Wu HX, Hao GX, Wang JW, Zhou CJ. Expression and significance of IGF-2, PCNA, MMP-7, and α-actin in gastric carcinoma with Lauren classification. Turk J Gastroenterol. 2013;24(2):99–108. https://doi.org/10.4318/tjg.2013.0571.

    Article  PubMed  Google Scholar 

  54. Radford EJ, Isganaitis E, Jimenez-Chillaron J, Schroeder J, Molla M, Andrews S, Didier N, Charalambous M, McEwen K, Marrazzi G, Sassoon D, Patti ME, Ferguson-Smith AC. An unbiased assessment of the role of imprinted genes in an intergenerational model of developmental programming. PLoS Genet. 2012;8(4):e1002605. https://doi.org/10.1371/journal.pgen.1002605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mina TH, Raikkonen K, Riley SC, Norman JE, Reynolds RM. Maternal distress associates with placental genes regulating fetal glucocorticoid exposure and IGF2: role of obesity and sex. Psychoneuroendocrinology. 2015;59:112–22. https://doi.org/10.1016/j.psyneuen.2015.05.004.

    Article  CAS  PubMed  Google Scholar 

  56. Cuffe JS, Walton SL, Singh RR, Spiers JG, Bielefeldt-Ohmann H, Wilkinson L, Little MH, Moritz KM. Mid- to late term hypoxia in the mouse alters placental morphology, glucocorticoid regulatory pathways and nutrient transporters in a sex-specific manner. J Physiol. 2014;592(14):3127–41. https://doi.org/10.1113/jphysiol.2014.272856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Meakin AS, Saif Z, Jones AR, Aviles PFV, Clifton VL. Review: placental adaptations to the presence of maternal asthma during pregnancy. Placenta. 2017;54:17–23. https://doi.org/10.1016/j.placenta.2017.01.123.

    Article  CAS  PubMed  Google Scholar 

  58. Sferruzzi-Perri AN, Sandovici I, Constancia M, Fowden AL. Placental phenotype and the insulin-like growth factors: resource allocation to fetal growth. J Phyiosl. 2017;595(15):5057–93. https://doi.org/10.1113/JP273330.

    Article  CAS  Google Scholar 

  59. Stevenson DK, Verter J, Fanaroff AA, Oh W, Ehrenkranz RA, Shankaran S, Donovan EF, Wright LL, Lemons JA, Tyson JE, Korones SB, Bauer CR, Stoll BJ, Papile LA. Sex differences in outcomes of very low birthweight infants: the newborn male disadvantage. Arch Dis Child Fetal Neonatal Ed. 2000;83(3):F182–5. https://doi.org/10.1136/fn.83.3.f182.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Murphy VE, Gibson PG, Giles WB, Zakar T, Smith R, Bisits AM, Kessell CG, Clifton VL. Maternal asthma is associated with reduced female fetal growth. Am J Respir Crit Care Med. 2003;168(11):1317–23. https://doi.org/10.1164/rccm.200303-374OC.

    Article  PubMed  Google Scholar 

  61. Stark MJ, Clifton VL, Wright IM. Neonates born to mothers with preeclampsia exhibit sex-specific alterations in microvascular function. Pediatr Res. 2009;65(3):292–5. https://doi.org/10.1203/pdr.0b013e318193edf1.

    Article  PubMed  Google Scholar 

  62. Thompson LP, Turan S, Aberdeen GW. Sex differences and the effects of intrauterine hypoxia on growth and in vivo heart function of fetal guinea pigs. Am J Physiol Regul Integr Comp Physiol. 2020;319(3):R243–54. https://doi.org/10.1152/ajpregu.00249.2019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Stark MJ, Clifton VL, Wright IM. Microvascular flow, clinical illness severity and cardiovascular function in the preterm infant. Arch Dis Child Fetal Neonatal Ed. 2008;93(4):F271–4. https://doi.org/10.1136/adc.2007.123539.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The project described is supported in part by a National Institute of Health (NIH HL126859, LPT) grant. The content is solely the responsibility of the authors and does not necessarily represent the official view of the National Institute of Health.

All animal procedures were approved by the University of Maryland Animal Care and Use Committee in accordance with the Association for Assessment and Accreditation of Laboratory Animal Care-accredited procedures (Animal Welfare Assurance No. A3200-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Loren P. Thompson.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

43032_2022_979_MOESM1_ESM.pptx

Supplementary file1 Figure 1. Western immunoblot of IGF-2 (MW=13kDa) expression in male and female placentas. Normoxic (NMX) (top) andhypoxic (HPX, 10.5% O2, 14 d) (bottom) placentas were loadedonto separate gels to compare differences due to sex. Each lane represents asingle placenta sample (N=7 for each group).Each target band was normalized to ß-actin (MW= 42 kDa) as a loadingcontrol. (PPTX 408 KB)

43032_2022_979_MOESM2_ESM.pptx

Supplementary file2 Figure 2. Western immunoblot of IGF-2 protein (MW=13kDa)expression in normoxic and hypoxic (10.5%O2, 14d) placentas. Male (top) and female (bottom)placentas were loaded onto separate gelsto compare the effects of treatment.Each lane represents a single placenta sample (N=7 for each). Each target band was normalized to ß-actin (MW=42 kDa) as a loading control. (PPTX 456 KB)

43032_2022_979_MOESM3_ESM.pptx

Supplementary file3 Figure 3. Western immunoblot ofphosphoinositide 3-kinase (PI3K, MW= 84 kDa) expression in normoxic and hypoxic(10.5%O2, 14d) placentas. Male(top) and female (bottom) placentas were loaded onto separategels to compare the effects of treatment.Each lane represents a single placenta sample (N=7 for each). Each target band was normalized to ß-actin (MW= 42 kDa) as a loading control. (PPTX 415 KB)

43032_2022_979_MOESM4_ESM.pptx

Supplementary file4 Figure 4. Western immunoblot of phosphorylated(AKT-P) and total protein kinase B (AKT-Total) expression in normoxic andhypoxic (10.5%O2, 14d) placentas.Male (top two images) and female (bottomtwo images) placentas were loaded onto separate gels to compare th effects oftreatment. For both male and femalesamples, membranes were first probed for AKT-P (MW=57kDa), stripped, and thenreprobed for AKT-Total (MW=57kDa). Each target band was normalized to ß-actin (MW= 42 kDa) as a loading control to obtain values for AKT-P and AKT-Total. Subsequently, AKT-P values were normalized toAKT-Total. Each lane represents a singleplacenta sample (N=7 for each group). (PPTX 803 KB)

43032_2022_979_MOESM5_ESM.pptx

Supplementary file5 Figure 5. Western immunoblot of proliferating cellnuclear antigen (PCNA, MW = 29kDa) expression in normoxic and hypoxic (10.5%O2,14d) placentas. Male (top) andfemale (bottom) placentas were loaded onto separate gels to compare theeffects of treatment. Each lanerepresents a single placenta sample (N=7 for each). Each target band was normalized to ß-actin (MW= 42 kDa) as a loading control. (PPTX 364 KB)

43032_2022_979_MOESM6_ESM.pptx

Supplementary file6 Figure 6: Western immunoblot offull membrane targeting IGF-2 and Beta actin of normoxic and hypoxic (10.5%O2,14d) male placentas. Top membrane identified IGF-2 targeted with a polyclonalantibody at a MW of 13kDa. Bottom imageidentifies the same membrane was stripped and re-probed for Beta actinidentified at a MW of 42kDa. (PPTX 1408 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elsamadicy, E.A., Thompson, L.P. Sex-Selective Increase of IGF-2 Expression in the Hypoxic Guinea Pig Placenta of Growth-Restricted Fetuses. Reprod. Sci. 29, 3015–3025 (2022). https://doi.org/10.1007/s43032-022-00979-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00979-y

Keywords

Navigation