Skip to main content

Advertisement

Log in

Plasma Exosomal miR-199a-5p Derived from Preeclampsia with Severe Features Impairs Endothelial Cell Function via Targeting SIRT1

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 12 December 2023

This article has been updated

Abstract

Preeclampsia (PE) is a pregnancy complication with high maternal and fetal morbidity and mortality rates. During pregnancy, the concentration of exosomes in the maternal blood circulation would increase, establishing that plasma exosomes play a role in the development of pregnancy. Our previous study implied the important role of exosomal miR-199a-5p in preeclampsia with severe features (sPE). This study aims to reveal the role of exosomal miR-199a-5p in contribution to the development of sPE. The results showed that the expression of miR-199a-5p was significantly higher in plasma exosomes and placenta tissue from patients with sPE than that in normal pregnant women. Additionally, hydrogen peroxide (H2O2) could upregulate the expression of miR-199a-5p in BeWo cells and cell-derived exosomes. In terms of the regulatory effect, exosomal miR-199a-5p was observed to inhibit the expression of SIRT1 in human umbilical venous endothelial cells (HUVECs). Moreover, the treatment of both miR-199a-5p-overexpressed exosomes and SIRT1 inhibitor EX527 could decrease the nitric oxide production, elevate the intracellular reactive oxygen species level, and enhance the expressions of ICAM-1 and VCAM-1 of HUVECs. Thus, our findings suggest that the upregulated plasma exosomal miR-199a-5p in sPE might result from the trophoblast of the impaired placenta under oxidative stress. Furthermore, exosomal miR-199a-5p could impair the endothelial cell function via targeting SIRT1, contributing to the development of preeclampsia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

Change history

References

  1. Phipps E, Prasanna D, Brima W, Jim B. Preeclampsia: updates in pathogenesis, definitions, and guidelines. Clin J Am Soc Nephrol. 2016;11(6):1102–13. https://doi.org/10.2215/CJN.12081115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Gestational Hypertension and Preeclampsia: ACOG Practice Bulletin, Number 222. Obstet Gynecol. 2020;135(6):e237-e60https://doi.org/10.1097/AOG.0000000000003891

  3. Croke L. Gestational hypertension and preeclampsia: a practice bulletin from ACOG. Am Fam Physician. 2019;100(10):649–50.

    PubMed  Google Scholar 

  4. Tomimatsu T, Mimura K, Matsuzaki S, Endo M, Kumasawa K, Kimura T. Preeclampsia: maternal systemic vascular disorder caused by generalized endothelial dysfunction due to placental antiangiogenic factors. Int J Mol Sci. 2019;20(17). https://doi.org/10.3390/ijms20174246.

  5. Buhimschi IA, Nayeri UA, Zhao G, Shook LL, Pensalfini A, Funai EF et al. Protein misfolding, congophilia, oligomerization, and defective amyloid processing in preeclampsia. Sci Transl Med. 2014;6(245):245ra92. https://doi.org/10.1126/scitranslmed.3008808.

  6. Verma S, Anderson TJ. Fundamentals of endothelial function for the clinical cardiologist. Circulation. 2002;105(5):546–9.

    Article  CAS  PubMed  Google Scholar 

  7. Konukoglu D, Uzun H. Endothelial dysfunction and hypertension. Adv Exp Med Biol. 2017;956:511–40. https://doi.org/10.1007/5584_2016_90.

    Article  PubMed  Google Scholar 

  8. Boeldt DS, Bird IM. Vascular adaptation in pregnancy and endothelial dysfunction in preeclampsia. J Endocrinol. 2017;232(1):R27–44. https://doi.org/10.1530/JOE-16-0340.

    Article  CAS  PubMed  Google Scholar 

  9. Wortzel I, Dror S, Kenific CM, Lyden D. Exosome-mediated metastasis: communication from a distance. Dev Cell. 2019;49(3):347–60.

    Article  CAS  PubMed  Google Scholar 

  10. Czernek L, Duchler M. Exosomes as messengers between mother and fetus in pregnancy. Int J Mol Sci. 2020;21(12). https://doi.org/10.3390/ijms21124264.

  11. Sarker S, Scholz-Romero K, Perez A, Illanes SE, Mitchell MD, Rice GE, et al. Placenta-derived exosomes continuously increase in maternal circulation over the first trimester of pregnancy. J Transl Med. 2014;12:204. https://doi.org/10.1186/1479-5876-12-204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pillay P, Maharaj N, Moodley J, Mackraj I. Placental exosomes and pre-eclampsia: maternal circulating levels in normal pregnancies and early and late onset pre-eclamptic pregnancies. Placenta. 2016;46:18–25. https://doi.org/10.1016/j.placenta.2016.08.078.

    Article  CAS  PubMed  Google Scholar 

  13. Fabian MR, Sonenberg N. The mechanics of miRNA-mediated gene silencing: a look under the hood of miRISC. Nat Struct Mol Biol. 2012;19(6):586–93. https://doi.org/10.1038/nsmb.2296.

    Article  CAS  PubMed  Google Scholar 

  14. Sun Z, Shi K, Yang S, Liu J, Zhou Q, Wang G, et al. Effect of exosomal miRNA on cancer biology and clinical applications. Mol Cancer. 2018;17(1):147. https://doi.org/10.1186/s12943-018-0897-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Greening DW, Gopal SK, Xu R, Simpson RJ, Chen W. Exosomes and their roles in immune regulation and cancer. Semin Cell Dev Biol. 2015;40:72–81. https://doi.org/10.1016/j.semcdb.2015.02.009.

    Article  CAS  PubMed  Google Scholar 

  16. Mycko MP, Baranzini SE. microRNA and exosome profiling in multiple sclerosis. Mult Scler. 2020;26(5):599–604. https://doi.org/10.1177/1352458519879303.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L, et al. Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 2019;9(23):6901–19. https://doi.org/10.7150/thno.37357.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Chen Z, Zhang W, Wu M, Huang H, Zou L, Luo Q. Pathogenic mechanisms of preeclampsia with severe features implied by the plasma exosomal miRNA profile. Bioengineered. 2021. https://doi.org/10.1080/21655979.2021.1993717.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ministrini S, Puspitasari YM, Beer G, Liberale L, Montecucco F, Camici GG. Sirtuin 1 in endothelial dysfunction and cardiovascular aging. Front Physiol. 2021;12: 733696. https://doi.org/10.3389/fphys.2021.733696.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Zhao Y, Zheng YF, Luo QQ, Yan T, Liu XX, Han L, et al. Edaravone inhibits hypoxia-induced trophoblast-soluble Fms-like tyrosine kinase 1 expression: a possible therapeutic approach to preeclampsia. Placenta. 2014;35(7):476–82. https://doi.org/10.1016/j.placenta.2014.04.002.

    Article  CAS  PubMed  Google Scholar 

  21. Dong Y, Chi X, Hai H, Sun L, Zhang M, Xie WF, et al. Antibodies in the breast milk of a maternal woman with COVID-19. Emerg Microbes Infect. 2020;9(1):1467–9. https://doi.org/10.1080/22221751.2020.1780952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yoshida K, Tsuda M, Matsumoto R, Semba S, Wang L, Sugino H, et al. Exosomes containing ErbB2/CRK induce vascular growth in premetastatic niches and promote metastasis of bladder cancer. Cancer Sci. 2019;110(7):2119–32. https://doi.org/10.1111/cas.14080.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu R-H, Xiao Z-Q, Zhou J-D, Yin C-Q, Chen Z-Z, Tang F-J et al. MiR-199a-5p represses the stemness of cutaneous squamous cell carcinoma stem cells by targeting Sirt1 and CD44ICD cleavage signaling. Cell cycle (Georgetown, Tex). 2020;19(1). https://doi.org/10.1080/15384101.2019.1689482.

  24. Hua Q, Jin M, Mi B, Xu F, Li T, Zhao L, et al. LINC01123, a c-Myc-activated long non-coding RNA, promotes proliferation and aerobic glycolysis of non-small cell lung cancer through miR-199a-5p/c-Myc axis. J Hematol Oncol. 2019;12(1):91. https://doi.org/10.1186/s13045-019-0773-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Li Y, Wang D, Li X, Shao Y, He Y, Yu H, et al. MiR-199a-5p suppresses non-small cell lung cancer via targeting MAP3K11. J Cancer. 2019;10(11):2472–9. https://doi.org/10.7150/jca.29426.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Yang GR, Dye TD, Li D. Effects of pre-gestational diabetes mellitus and gestational diabetes mellitus on macrosomia and birth defects in Upstate New York. Diabetes Res Clin Pract. 2019;155: 107811. https://doi.org/10.1016/j.diabres.2019.107811.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Redman CWG, Staff AC. Preeclampsia, biomarkers, syncytiotrophoblast stress, and placental capacity. American journal of obstetrics and gynecology. 2015;213(4 Suppl):S9.e1, S9-S.e1, 11. https://doi.org/10.1016/j.ajog.2015.08.003.

  28. Brooks D, Barr LC, Wiscombe S, McAuley DF, Simpson AJ, Rostron AJ. Human lipopolysaccharide models provide mechanistic and therapeutic insights into systemic and pulmonary inflammation. Eur Respir J. 2020;56(1). https://doi.org/10.1183/13993003.01298-2019.

  29. Coyle CH, Martinez LJ, Coleman MC, Spitz DR, Weintraub NL, Kader KN. Mechanisms of H2O2-induced oxidative stress in endothelial cells. Free Radic Biol Med. 2006;40(12):2206–13. https://doi.org/10.1016/j.freeradbiomed.2006.02.017.

    Article  CAS  PubMed  Google Scholar 

  30. Yang XZ, Chang Y, Wei W. Endothelial dysfunction and inflammation: immunity in rheumatoid arthritis. Med Inflam 2016;2016:1–9.

  31. Cyr AR, Huckaby LV, Shiva SS, Zuckerbraun BS. Nitric oxide and endothelial dysfunction. Crit Care Clin. 2020;36(2):307–21. https://doi.org/10.1016/j.ccc.2019.12.009.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Incalza MA, D'Oria R, Natalicchio A, Perrini S, Laviola L, Giorgino F. Oxidative stress and reactive oxygen species in endothelial dysfunction associated with cardiovascular and metabolic diseases. Vascul Pharmacol. 2018;100. https://doi.org/10.1016/j.vph.2017.05.005.

  33. Laursen JB, Somers M, Kurz S, McCann L, Warnholtz A, Freeman BA, et al. Endothelial regulation of vasomotion in apoE-deficient mice: implications for interactions between peroxynitrite and tetrahydrobiopterin. Circulation. 2001;103(9):1282–8.

    Article  CAS  PubMed  Google Scholar 

  34. Radi R. Oxygen radicals, nitric oxide, and peroxynitrite: redox pathways in molecular medicine. Proc Natl Acad Sci USA. 2018;115(23):5839–48. https://doi.org/10.1073/pnas.1804932115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Cheang WS, Wong WT, Wang L, Cheng CK, Lau CW, Ma RCW, et al. Resveratrol ameliorates endothelial dysfunction in diabetic and obese mice through sirtuin 1 and peroxisome proliferator-activated receptor δ. Pharmacol Res. 2019;139:384–94. https://doi.org/10.1016/j.phrs.2018.11.041.

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H-N, Dai Y, Zhang C-H, Omondi AM, Ghosh A, Khanra I, et al. Sirtuins family as a target in endothelial cell dysfunction: implications for vascular ageing. Biogerontology. 2020;21(5):495–516. https://doi.org/10.1007/s10522-020-09873-z.

    Article  CAS  PubMed  Google Scholar 

  37. Kitada M, Ogura Y, Koya D. The protective role of Sirt1 in vascular tissue: its relationship to vascular aging and atherosclerosis. Aging (Albany NY). 2016;8(10):2290–307. https://doi.org/10.18632/aging.101068.

    Article  CAS  PubMed  Google Scholar 

  38. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, et al. Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J. 2004;23(12):2369–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Mattagajasingh I, Kim C-S, Naqvi A, Yamamori T, Hoffman TA, Jung S-B, et al. SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase. Proc Natl Acad Sci USA. 2007;104(37):14855–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Evans CE, Iruela-Arispe ML, Zhao YY. Mechanisms of endothelial regeneration and vascular repair and their application to regenerative medicine. Am J Pathol. 2021;191(1):52–65. https://doi.org/10.1016/j.ajpath.2020.10.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of Sichuan Province (No.2022NSFSC1373), the Luzhou Key R&D Technology Project for Social Development (No. 2021-syf-27), the Doctoral Research Initiation Fund of Affiliated Hospital of Southwest Medical University, and the National Natural Science Foundation of China (No. 81703242).

Author information

Authors and Affiliations

Authors

Contributions

All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission. Li Zou and Qingqing Luo contributed to the study design. Zhirui Chen performed experiments and analyzed data. Zhirui Chen, Qingqing Luo, Mengying Wu, Haixia Huang, and Hui Tao contributed to the drafting and revision of the manuscript. Qingqing Luo contributed to funding acquisition.

Corresponding authors

Correspondence to Li Zou or Qingqing Luo.

Ethics declarations

Ethics Approval

This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Ethics Committee of Tongji Medical College, Huazhong University of Science and Technology (HUST) (No. 2018S419).

Consent to Participate

Not applicable.

Consent for Publication

All the authors agreed to submit the manuscript for the possible publication of the journal.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Wu, M., Huang, H. et al. Plasma Exosomal miR-199a-5p Derived from Preeclampsia with Severe Features Impairs Endothelial Cell Function via Targeting SIRT1. Reprod. Sci. 29, 3413–3424 (2022). https://doi.org/10.1007/s43032-022-00977-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00977-0

Keywords

Navigation