Skip to main content
Log in

P450 Side-Chain Cleavage Enzyme (P450-SCC) Is an Ovarian Autoantigen in a Mouse Model for Autoimmune Oophoritis

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Steroid-producing cells contain key cytochrome P450 enzymes, such as side-chain cleavage (P450-SCC) and 17α-hydroxylase (17α-OH). They are required for steroid hormone synthesis and considered antigens associated with Addison’s disease and autoimmune primary ovarian insufficiency (POI). We studied an animal model for human autoimmune POI in mice with autoimmune oophoritis induced by neonatal thymectomy performed at day 3 (TX3). We previously identified an oocyte-specific protein as a major antigen inciting autoimmune oophoritis in mice. In this study, we characterized ovarian steroid-producing cell antigens. Using indirect immunofluorescence staining, we tested immune reactions in mouse ovarian and adrenal tissue sections with sera from TX3 female mice. More than half of the TX3 mice (8 of 15) produced antibodies reacting with both ovarian and adrenal steroid-producing cells, including some that reacted to oocytes as well. We produced recombinant proteins for the three key steroidogenic enzymes 17α-OH, P450-SSC, and 3β-hydroxysteroid dehydrogenase (3β-HSD) and tested their immune reactions with individual mouse sera. By immunoblotting, all mouse sera that reacted with the steroid-producing cells (n = 8) were shown to react with the P450-SCC, but not with the 17α-OH or 3β-HSD recombinant proteins. The sham-operated mouse sera and TX3 mouse sera negative for steroid-producing cells did not react with the P450-SCC recombinant protein. Our findings indicate that the P450-SCC is a specific and unique major antigen within the ovarian steroid-producing cells. Given their similarity of predicted antigenicity, we assume that P450-SCC acts in human autoimmune POI as it does in mouse autoimmune oophoritis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data and materials are available. The software used in this study is available online for the public.

References

  1. Gonzalez FJ, Gelboin HV. Human cytochromes P450: evolution and cDNA-directed expression. Environ Health Perspect. 1992;98:81–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lamb DC, Lei L, Warrilow AG, Lepesheva GI, Mullins JG, Waterman MR, et al. The first virally encoded cytochrome p450. J Virol. 2009;83(16):8266–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Danielson PB. The cytochrome P450 superfamily: biochemistry, evolution and drug metabolism in humans. Curr Drug Metab. 2002;3(6):561–97.

    Article  CAS  PubMed  Google Scholar 

  4. Guengerich FP. Intersection of the roles of cytochrome P450 enzymes with xenobiotic and endogenous substrates: relevance to toxicity and drug interactions. Chem Res Toxicol. 2017;30(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  5. Hanukoglu I. Steroidogenic enzymes: structure, function, and role in regulation of steroid hormone biosynthesis. J Steroid Biochem Mol Biol. 1992;43(8):779–804.

    Article  CAS  PubMed  Google Scholar 

  6. Payne AH, Hales DB. Overview of steroidogenic enzymes in the pathway from cholesterol to active steroid hormones. Endocr Rev. 2004;25(6):947–70.

    Article  CAS  PubMed  Google Scholar 

  7. Frye CA. Steroids, reproductive endocrine function, and affect. A review Minerva Ginecol. 2009;61(6):541–62.

    CAS  PubMed  Google Scholar 

  8. Marcinkowska E, Wiedlocha A. Steroid signal transduction activated at the cell membrane: from plants to animals. Acta Biochim Pol. 2002;49(3):735–45.

    Article  CAS  PubMed  Google Scholar 

  9. Kirshenbaum M, Orvieto R. Premature ovarian insufficiency (POI) and autoimmunity-an update appraisal. J Assist Reprod Genet. 2019;36(11):2207–15.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wilson C. Autoimmunity: autoimmune Addison disease and premature ovarian failure. Nat Rev Endocrinol. 2011;7(9):498.

    PubMed  Google Scholar 

  11. Winqvist O, Gustafsson J, Rorsman F, Karlsson FA, Kampe O. Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison’s disease. J Clin Invest. 1993;92(5):2377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Betterle C, Dal Pra C, Mantero F, Zanchetta R. Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev. 2002;23(3):327–64.

    Article  CAS  PubMed  Google Scholar 

  13. Muir A, Schatz DA, Maclaren NK. Autoimmune Addison’s disease. Springer Semin Immunopathol. 1993;14(3):275–84.

    Article  CAS  PubMed  Google Scholar 

  14. Weetman AP. Autoantigens in Addison’s disease and associated syndromes. Clin Exp Immunol. 1997;107(2):227–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen S, Sawicka J, Betterle C, Powell M, Prentice L, Volpato M, et al. Autoantibodies to steroidogenic enzymes in autoimmune polyglandular syndrome, Addison’s disease, and premature ovarian failure. J Clin Endocrinol Metab. 1996;81(5):1871–6.

    CAS  PubMed  Google Scholar 

  16. Uibo R, Aavik E, Peterson P, Perheentupa J, Aranko S, Pelkonen R, et al. Autoantibodies to cytochrome P450 enzymes P450scc, P450c17, and P450c21 in autoimmune polyglandular disease types I and II and in isolated Addison’s disease. J Clin Endocrinol Metab. 1994;78(2):323–8.

    CAS  PubMed  Google Scholar 

  17. Seissler J, Schott M, Steinbrenner H, Peterson P, Scherbaum WA. Autoantibodies to adrenal cytochrome P450 antigens in isolated Addison’s disease and autoimmune polyendocrine syndrome type II. Exp Clin Endocrinol Diabetes. 1999;107(3):208–13.

    Article  CAS  PubMed  Google Scholar 

  18. Nelson LM. Clinical practice. Primary ovarian insufficiency. N Engl J Med. 2009;360(6):606–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kalantaridou SN, Nelson LM. Autoimmune premature ovarian failure: of mice and women. J Am Med Womens Assoc (1972). 1998;53(1):18–20.

    CAS  Google Scholar 

  20. Domniz N, Meirow D. Premature ovarian insufficiency and autoimmune diseases. Best Pract Res Clin Obstet Gynaecol. 2019;60:42–55.

    Article  PubMed  Google Scholar 

  21. Bakalov VK, Vanderhoof VH, Bondy CA, Nelson LM. Adrenal antibodies detect asymptomatic auto-immune adrenal insufficiency in young women with spontaneous premature ovarian failure. Hum Reprod. 2002;17(8):2096–100.

    Article  CAS  PubMed  Google Scholar 

  22. Sen A, Kushnir VA, Barad DH, Gleicher N. Endocrine autoimmune diseases and female infertility. Nat Rev Endocrinol. 2014;10(1):37–50.

    Article  CAS  PubMed  Google Scholar 

  23. Taguchi O, Nishizuka Y, Sakakura T, Kojima A. Autoimmune oophoritis in thymectomized mice: detection of circulating antibodies against oocytes. Clin Exp Immunol. 1980;40(3):540–53.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Tung KS, Smith S, Matzner P, Kasai K, Oliver J, Feuchter F, et al. Murine autoimmune oophoritis, epididymoorchitis, and gastritis induced by day 3 thymectomy. Autoantibodies Am J Pathol. 1987;126(2):303–14.

    CAS  PubMed  Google Scholar 

  25. Tong ZB, Nelson LM. A mouse gene encoding an oocyte antigen associated with autoimmune premature ovarian failure. Endocrinology. 1999;140(8):3720–6.

    Article  CAS  PubMed  Google Scholar 

  26. Tong ZB, Nelson LM, Dean J. Mater encodes a maternal protein in mice with a leucine-rich repeat domain homologous to porcine ribonuclease inhibitor. Mamm Genome. 2000;11(4):281–7.

    Article  CAS  PubMed  Google Scholar 

  27. Tong ZB, Gold L, Pfeifer KE, Dorward H, Lee E, Bondy CA, et al. Mater, a maternal effect gene required for early embryonic development in mice. Nat Genet. 2000;26(3):267–8.

    Article  CAS  PubMed  Google Scholar 

  28. Otsuka N, Tong ZB, Vanevski K, Tu W, Cheng MH, Nelson LM. Autoimmune oophoritis with multiple molecular targets mitigated by transgenic expression of mater. Endocrinology. 2011;152(6):2465–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tong ZB, Bondy CA, Zhou J, Nelson LM. A human homologue of mouse Mater, a maternal effect gene essential for early embryonic development. Hum Reprod. 2002;17(4):903–11.

    Article  CAS  PubMed  Google Scholar 

  30. Alimohammadi M, Bjorklund P, Hallgren A, Pontynen N, Szinnai G, Shikama N, et al. Autoimmune polyendocrine syndrome type 1 and NALP5, a parathyroid autoantigen. N Engl J Med. 2008;358(10):1018–28.

    Article  CAS  PubMed  Google Scholar 

  31. Alard P, Thompson C, Agersborg SS, Thatte J, Setiady Y, Samy E, et al. Endogenous oocyte antigens are required for rapid induction and progression of autoimmune ovarian disease following day-3 thymectomy. J Immunol. 2001;166(7):4363–9.

    Article  CAS  PubMed  Google Scholar 

  32. Docherty LE, Rezwan FI, Poole RL, Turner CL, Kivuva E, Maher ER, et al. Mutations in NLRP5 are associated with reproductive wastage and multilocus imprinting disorders in humans. Nat Commun. 2015;6:8086.

    Article  PubMed  Google Scholar 

  33. Mu J, Wang W, Chen B, Wu L, Li B, Mao X, et al. Mutations in NLRP2 and NLRP5 cause female infertility characterised by early embryonic arrest. J Med Genet. 2019;56(7):471–80.

    Article  CAS  PubMed  Google Scholar 

  34. Xu Y, Qian Y, Liu Y, Wang Q, Wang R, Zhou Y, et al. A novel homozygous variant in NLRP5 is associate with human early embryonic arrest in a consanguineous Chinese family. Clin Genet. 2020;98(1):69–73.

    Article  CAS  PubMed  Google Scholar 

  35. Sjodin K, Dalmasso AP, Smith JM, Martinez C. Thymectomy in newborn and adult mice. Transplantation. 1963;1:521–5.

    Article  CAS  PubMed  Google Scholar 

  36. Jespersen MC, Peters B, Nielsen M, Marcatili P. BepiPred-2.0: improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Res. 2017;45(W1):W24–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Larsen JE, Lund O, Nielsen M. Improved method for predicting linear B-cell epitopes. Immunome Res. 2006;2:2.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Paul S, LindestamArlehamn CS, Scriba TJ, Dillon MB, Oseroff C, Hinz D, et al. Development and validation of a broad scheme for prediction of HLA class II restricted T cell epitopes. J Immunol Methods. 2015;422:28–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nair S, Mastorakos G, Raj S, Nelson LM. Murine experimental autoimmune oophoritis develops independently of gonadotropin stimulation and is primarily localized in the stroma and theca. Am J Reprod Immunol. 1995;34(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  40. Raj S, Nair S, Mastorakos G, Nelson LM. Anamnestic development of lymphocytic infiltration in murine experimental autoimmune oophoritis is primarily localized in the stroma and theca. Am J Reprod Immunol. 1995;34(2):125–31.

    Article  CAS  PubMed  Google Scholar 

  41. Kojima A, Tanaka-Kojima Y, Sakakura T, Nishizuka Y. Spontaneous development of autoimmune thyroiditis in neonatally thymectomized mice. Lab Invest. 1976;34(6):550–7.

    CAS  PubMed  Google Scholar 

  42. Nelson DR, Koymans L, Kamataki T, Stegeman JJ, Feyereisen R, Waxman DJ, et al. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics. 1996;6(1):1–42.

    Article  CAS  PubMed  Google Scholar 

  43. Kaufman DL, Erlander MG, Clare-Salzler M, Atkinson MA, Maclaren NK, Tobin AJ. Autoimmunity to two forms of glutamate decarboxylase in insulin-dependent diabetes mellitus. J Clin Invest. 1992;89(1):283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Iddah MA, Macharia BN. Autoimmune thyroid disorders. ISRN Endocrinol. 2013;2013: 509764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tong ZB, Gold L, De Pol A, Vanevski K, Dorward H, Sena P, et al. Developmental expression and subcellular localization of mouse MATER, an oocyte-specific protein essential for early development. Endocrinology. 2004;145(3):1427–34.

    Article  CAS  PubMed  Google Scholar 

  46. Dalmasso AP, Martinez C, Sjodin K, Good RA. Studies on the role of the thymus in immunobiology; reconstitution of immunologic capacity in mice thymectomized at birth. J Exp Med. 1963;118:1089–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Sakaguchi S, Fukuma K, Kuribayashi K, Masuda T. Organ-specific autoimmune diseases induced in mice by elimination of T cell subset. I. Evidence for the active participation of T cells in natural self-tolerance; deficit of a T cell subset as a possible cause of autoimmune disease. J Exp Med. 1985;161(1):72–87.

    Article  CAS  PubMed  Google Scholar 

  48. Sakaguchi S, Takahashi T, Nishizuka Y. Study on cellular events in post-thymectomy autoimmune oophoritis in mice. II. Requirement of Lyt-1 cells in normal female mice for the prevention of oophoritis. J Exp Med. 1982;156(6):1577–86.

    Article  CAS  PubMed  Google Scholar 

  49. Samy ET, Parker LA, Sharp CP, Tung KS. Continuous control of autoimmune disease by antigen-dependent polyclonal CD4+CD25+ regulatory T cells in the regional lymph node. J Exp Med. 2005;202(6):771–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Wickenheisser JK, Biegler JM, Nelson-Degrave VL, Legro RS, Strauss JF 3rd, McAllister JM. Cholesterol side-chain cleavage gene expression in theca cells: augmented transcriptional regulation and mRNA stability in polycystic ovary syndrome. PLoS ONE. 2012;7(11): e48963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Ong M, Cheng J, Jin X, Lao W, Johnson M, Tan Y, et al. Paeoniflorin extract reverses dexamethasone-induced testosterone over-secretion through downregulation of cytochrome P450 17A1 expression in primary murine theca cells. J Ethnopharmacol. 2019;229:97–103.

    Article  CAS  PubMed  Google Scholar 

  52. Su YQ, Nyegaard M, Overgaard MT, Qiao J, Giudice LC. Participation of mitogen-activated protein kinase in luteinizing hormone-induced differential regulation of steroidogenesis and steroidogenic gene expression in mural and cumulus granulosa cells of mouse preovulatory follicles. Biol Reprod. 2006;75(6):859–67.

    Article  CAS  PubMed  Google Scholar 

  53. Bakalov VK, Anasti JN, Calis KA, Vanderhoof VH, Premkumar A, Chen S, et al. Autoimmune oophoritis as a mechanism of follicular dysfunction in women with 46, XX spontaneous premature ovarian failure. Fertil Steril. 2005;84(4):958–65.

    Article  PubMed  Google Scholar 

  54. Nelson LM. Autoimmune ovarian failure: comparing the mouse model and the human disease. J Soc Gynecol Investig. 2001;8(1 Suppl Proceedings):S55-7.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are thankful to Dr. Lawrence Nelson for valuable discussion of this study and helpful improvement of the manuscript, and to Ms. Nancy Terry at NIH Library for providing an editing service on this manuscript. We appreciate Dr. David Gerhold and Dr. Anton Simeonov for their critical readings of the manuscript.

Funding

This work was supported by the Intramural Research Programs at NICHD and NCATS, National Institutes of Health, USA.

Author information

Authors and Affiliations

Authors

Contributions

ZBT and AHD conceived and designed the study. ZBT, NO, WT, and QW carried out the experiments. ZBT drafted the manuscript. All authors participated in the process of the manuscript’s reviews and edits. All authors approved the manuscript for a submission and publication.

Corresponding author

Correspondence to Zhi-Bin Tong.

Ethics declarations

Ethics Approval

This study was performed under the animal study protocols approved by the animal care and study commission at NICHD.

Consent for Publication

The authors agreed to submit the manuscript for a publication.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 103 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tong, ZB., Otsuka, N., Tu, W. et al. P450 Side-Chain Cleavage Enzyme (P450-SCC) Is an Ovarian Autoantigen in a Mouse Model for Autoimmune Oophoritis. Reprod. Sci. 29, 2391–2400 (2022). https://doi.org/10.1007/s43032-022-00970-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00970-7

Keywords

Navigation