Skip to main content
Log in

Assessment of the Role of Nuclear ENDOG Gene and mtDNA Variations on Paternal Mitochondrial Elimination (PME) in Infertile Men: An Experimental Study

  • Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

A Correction to this article was published on 04 May 2022

This article has been updated

Abstract

In humans and most animals, maternal inheritance of mitochondria and mitochondrial DNA (mtDNA) is considered as an universal assumption. Recently, several lines of evidence suggest that different species seem to employ distinct mechanisms to prevent the inheritance of paternal mtDNA. There are few studies in the literature on the molecular basis of sperm mtDNA elimination in mammals and paternal mtDNA transmission in humans. Endonuclease G (ENDOG) is a mitochondrial nuclease encoded by nuclear ENDOG gene. The critical importance of ENDOG gene on paternal mitochondrial elimination (PME) has been previously demonstrated in model organisms such as C. elegans and D. melanogaster. However, its mechanism in human is still unclear. Therefore, we aimed to evaluate whether nuclear ENDOG gene copy number could be a potential marker of paternal mtDNA transmission or not.

Male factor infertility patients diagnosed with different infertility subgroups such as azoospermia, oligoteratozoospermia, astheno-teratozoospermia were included in this study: 13 infertile men and 25 healthy men as control group. Quantitative real-time polymerase chain reaction (qPCR) analysis and dual-color Fluorescence in situ hybridization (FISH) method were used to compare the groups. FISH method was applied to verify qPCR results and two signals were observed in nearly all patients. ENDOG gene copy number data were evaluated by comparing them with entire human mtDNA next-generation sequencing (NGS) analysis results obtained through bioinformatics and proteomics tools. Mitochondrial whole genome sequencing (WGS) data allowed determination of novel and reported variations such as single nucleotide polymorphisms (SNPs), multiple nucleotide polymorphism (MNP), insertion/deletion (INDEL). Missense variants causing amino acid substitution were filtered out from patients' mtDNA WGS data.

Relative copy number of target ENDOG gene in male infertility patients [0.49 (0.31 – 0.77)] was lower than healthy controls [1.00 (0.66 – 1.51)], and statistical results showed significant differences between the groups (p < 0.01). A total of 38 missense variants were detected in the genes encoding the proteins involved in the respiratory chain complex. Moreover, we detected paternal mtDNA transmissions in the children of these patients who applied to assisted reproductive techniques.

In conclusion, this study reveals that ENDOG gene may be an important factor for the PME mechanism in humans. To the best of our knowledge, this is the first study in humans about this topic and assessment of ENDOG gene sequencing and gene expression studies in a larger sample size including patients with male factor infertility would be our future project.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

Supplementary tables are available at the online version of journal.

Change history

References

  1. Sato M, Sato K. Maternal inheritance of mitochondrial DNA by diverse mechanisms to eliminate paternal mitochondrial DNA. Biochim Biophys Acta. 2013;1833(8):1979–84. https://doi.org/10.1016/j.bbamcr.2013.03.010.

    Article  CAS  PubMed  Google Scholar 

  2. Peng L, Wen M, Liu Q, Peng J, Tang S, Hong Y, Liu S, Xiao Y. Persistence and transcription of paternal mtDNA dependent on the delivery strategy rather than mitochondria source in fish embryos. Cell Physiol Biochem. 2018;47(5):1898–908. https://doi.org/10.1159/000491070.

    Article  CAS  PubMed  Google Scholar 

  3. Zhou Q, Li H, Li H, Nakagawa A, Lin JLJ, Lee ES, Harry BL, Skeen-Gaar RR, Suehiro Y, William D, Mitani S, Yuan HS, Kang BH, Xue D. Mitochondrial endonuclease G mediates breakdown of paternal mitochondria upon fertilization. Science. 2016;353(6297):394–9. https://doi.org/10.1126/science.aaf4777.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Molgora S, Fenaroli V, Acquati C, De Donno A, Baldini MP, Saita E. Examining the Role of Dyadic Coping on the Marital Adjustment of Couples Undergoing Assisted Reproductive Technology (ART). Front Psychol. 2019;10:415. https://doi.org/10.3389/fpsyg.2019.00415.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tasci E, Bolsoy N, Kavlak O, Yucesoy F. Marital adjustment in infertile women. J Turk Obstet Gynecol Soc. 2008;5(2):105–10.

    Google Scholar 

  6. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: A review of literature. J Hum Reprod Sci. 2015;8(4):191–6.

    Article  Google Scholar 

  7. Zini A, Fischer MA, Sharir S, Shayegan B, Phang D, Jarvi K. Prevalence of abnormal sperm DNA denaturation in fertile and infertile men. Urology. 2002;60(6):1069–72. https://doi.org/10.1016/s0090-4295(02)01975-1.

    Article  PubMed  Google Scholar 

  8. Moskovtsev SI, Willis J, White J, Mullen JB. Sperm DNA damage: correlation to severity of semen abnormalities. Urology. 2009;74(4):789–93. https://doi.org/10.1016/j.urology.2009.05.043.

    Article  PubMed  Google Scholar 

  9. Belloc S, Benkhalifa M, Cohen-Bacrie M, Dalleac A, Chahine H, Amar E, Zini A. Which isolated sperm abnormality is most related to sperm DNA damage in men presenting for infertility evaluation. J Assist Reprod Genet. 2014;31(5):527–32. https://doi.org/10.1007/s10815-014-0194-3.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wallace DC. Mitochondrial diseases in man and Mouse. Science. 1999;283(5407):1482–8. https://doi.org/10.1126/science.283.5407.1482.

    Article  CAS  PubMed  Google Scholar 

  11. Maassen JA, Hart LMT, Van Essen E, Heine RJ, Nijpels G, Tafrechi RSJ, Raap AK, Janssen GMC, Lemkes HHPJ. Mitochondrial diabetes: molecular mechanisms and clinical presentation. Diabetes. 2004;53:S103–9. https://doi.org/10.2337/diabetes.53.2007.s103.

    Article  CAS  PubMed  Google Scholar 

  12. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi JI. ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science. 2008;320(5876):661–4. https://doi.org/10.1126/science.1156906.

    Article  CAS  PubMed  Google Scholar 

  13. Benkhalifa M, Ferreira YJ, Chahine H, Louanjli N, Miron P, Merviel P, Copin H. Mitochondria: Participation to infertility as source of energy and cause of senescence. Int J Biochem Cell Biol. 2014;55:60–4. https://doi.org/10.1016/j.biocel.2014.08.011.

    Article  CAS  PubMed  Google Scholar 

  14. Lestienne P, Reynier P, Chretien MF, Penisson-Besnier I, Malthiery Y, Rohmer V. Oligoasthenospermia associated with multiple mitochondrial DNA rearrangements. Mol Hum Reprod. 1997;3(9):811–4. https://doi.org/10.1093/molehr/3.9.811.

    Article  CAS  PubMed  Google Scholar 

  15. Gabriel MS, Chan SW, Alhathal N, Chen JZ, Zini A. Influence of microsurgical varicocelectomy on human sperm mitochondrial DNA copy number: a pilot study. J Assist Reprod Genet. 2012;29(8):759–64. https://doi.org/10.1007/s10815-012-9785-z.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Smadi MAA, Hammadeh ME, Solomayer E, Batiha O, Altalib MM, Jahmani MY, Shboul MA, Nusair B, Amor H. Impact of Mitochondrial Genetic Variants in ND1, ND2, ND5, and ND6 Genes on Sperm Motility and Intracytoplasmic Sperm Injection (ICSI) Outcomes. Reprod Sci. 2021;28(5):1540–55. https://doi.org/10.1007/s43032-020-00449-3.

    Article  CAS  PubMed  Google Scholar 

  17. Vertika S, Singh KK, Rajender S. Mitochondria, spermatogenesis, and male infertility – An update. Mitochondrion. 2020;54:26–40. https://doi.org/10.1016/j.mito.2020.06.003.

    Article  CAS  PubMed  Google Scholar 

  18. Faja F, Carlini T, Coltrinari G, Finocchi F, Nespoli M, Pallotti F, Lenzi A, Lombardo F, Paoli D. Human sperm motility: a molecular study of mitochondrial DNA, mitochondrial transcription factor A gene and DNA fragmentation. Mol Biol Rep. 2019;46(4):4113–21. https://doi.org/10.1007/s11033-019-04861-0.

    Article  CAS  PubMed  Google Scholar 

  19. Park YJ, Pang MG. Mitochondrial Functionality in Male Fertility: From Spermatogenesis to Fertilization. Antioxidants (Basel). 2021;10(1):98. https://doi.org/10.3390/antiox10010098.

    Article  CAS  Google Scholar 

  20. Durairajanayagam D, Singh D, Agarwal A, Henkel R. Causes and consequences of sperm mitochondrial dysfunction. Andrologia. 2021;53(1): e13666. https://doi.org/10.1111/and.13666.

    Article  CAS  PubMed  Google Scholar 

  21. Zhang WD, Zhang Z, Jia LT, Zhang LL, Fu T, Li YS, Wang P, Sun L, Shi Y, Zhang HZ. Oxygen free radicals and mitochondrial signaling in oligospermia and asthenospermia. Mol Med Rep. 2014;10(4):1875–80. https://doi.org/10.3892/mmr.2014.2428.

    Article  CAS  PubMed  Google Scholar 

  22. de Lamirande E, Gagnon C. Impact of reactive oxygen species on spermatozoa: A balancing act between beneficial and detrimental effects. Hum Reprod. 1995;10(Suppl 1):15–21. https://doi.org/10.1093/humrep/10.suppl_1.15.

    Article  CAS  PubMed  Google Scholar 

  23. Ford WCL. Regulation of sperm function by reactive oxygen species. Hum Reprod Update. 2004;10(5):387–99. https://doi.org/10.1093/humupd/dmh034.

    Article  CAS  PubMed  Google Scholar 

  24. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. I. Effects on the motility of intact spermatozoa and on sperm axonemes. J Androl. 1992;13(5):368-378. PMID: 1331006.

  25. de Lamirande E, Gagnon C. Reactive oxygen species and human spermatozoa. II. Depletion of adenosine triphosphate plays an important role in the inhibition of sperm motility. J Androl. 1992;13(5):379–386. PMID: 1331007.

  26. Folgerø T, Bertheussen K, Lindal S, Torbergsen T, Oian P. Mitochondrial disease and reduced sperm motility. Hum Reprod. 1993;8(11):1863–8. https://doi.org/10.1093/oxfordjournals.humrep.a137950.

    Article  PubMed  Google Scholar 

  27. Kao SH, Chao HT, Wei YH. Mitochondrial deoxyribonucleic acid 4977-bp deletion is associated with diminished fertility and motility of human sperm. Biol Reprod. 1995;52:729–36. https://doi.org/10.1095/biolreprod52.4.729.

    Article  CAS  PubMed  Google Scholar 

  28. Kao SH, Chao HT, Wei YH. Multiple deletions of mitochondrial DNA are associated with the decline of motility and fertility of human spermatozoa. Mol Hum Reprod. 1998;4(7):657–66. https://doi.org/10.1093/molehr/4.7.657.

    Article  CAS  PubMed  Google Scholar 

  29. Holyoake AJ, McHugh P, Wu M, O’Carroll S, Benny P, Sin IL, Sin FY. High incidence of single nucleotide substitutions in the mitochondrial genome is associated with poor semen parameters in men. Int J Androl. 2001;24(3):175–82. https://doi.org/10.1046/j.1365-2605.2001.00292.x.

    Article  CAS  PubMed  Google Scholar 

  30. Ieremiadou F, Rodakis GC. Correlation of the 4977 bp mitochondrial DNA deletion with human sperm dysfunction. BMC Res Notes. 2009;4(2):18. https://doi.org/10.1186/1756-0500-2-18.

    Article  CAS  Google Scholar 

  31. Spiropoulos J, Turnbull DM, Chinnery PF. Can mitochondrial DNA mutations cause sperm dysfunction? Mol Hum Reprod. 2002;8(8):719–21. https://doi.org/10.1093/molehr/8.8.719.

    Article  CAS  PubMed  Google Scholar 

  32. Selvi Rani D, Vanniarajan A, Gupta NJ, Chakravarty B, Singh L, Thangaraj K. A novel missense mutation C11994T in the mitochondrial ND4 gene as a cause of low sperm motility in the Indian subcontinent. Fertil Steril. 2006;86(6):1783–5. https://doi.org/10.1016/j.fertnstert.2006.04.044.

    Article  CAS  PubMed  Google Scholar 

  33. Schwartz M, Vissing J. Paternal inheritance of mitochondrial DNA. N Engl J Med. 2002;347(8):576–80. https://doi.org/10.1056/NEJMoa020350.

    Article  PubMed  Google Scholar 

  34. Lane N. Mitonuclear match: Optimizing fitness and fertility over generations drives ageing within generations. BioEssays. 2011;33(11):860–9. https://doi.org/10.1002/bies.201100051.

    Article  CAS  PubMed  Google Scholar 

  35. Sharpley MS, Marciniak C, Eckel-Mahan K, McManus M, Crimi M, Waymire K, Lin CS, Masubuchi S, Friend N, Koike M, Chalkia D, MacGregor G, Sassone-Corsi P, Wallace DC. Heteroplasmy of mouse mtDNA is genetically unstable and results in altered behavior and cognition. Cell. 2012;151(2):333–43. https://doi.org/10.1016/j.cell.2012.09.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eker C, Goksever H, Karamustafaoglu B, Gunel T. Investigation of human paternal mitochondrial DNA transmission in ART babies whose fathers with male infertility. Eur J Obstet Gynecol Reprod Biol. 2019;236:183–92. https://doi.org/10.1016/j.ejogrb.2019.02.011.

    Article  CAS  PubMed  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25(4):402–8. https://doi.org/10.1006/meth.2001.1262.

    Article  CAS  PubMed  Google Scholar 

  38. Li LY, Luo X, Wang X. Endonuclease G is an apoptotic DNase when released from mitochondria. Nature. 2001;412(6842):95–9. https://doi.org/10.1038/35083620.

    Article  CAS  PubMed  Google Scholar 

  39. Orrenius S, Gogvadze V, Zhivotovsky B. Calcium and mitochondria in the regulation of cell death. Biochem Biophys Res Commun. 2015;460(1):72–81. https://doi.org/10.1016/j.bbrc.2015.01.137.

    Article  CAS  PubMed  Google Scholar 

  40. Cote J, Ruiz-Carrillo A. Primers for mitochondrial DNA replication generated by endonuclease G. Science. 1993;261(5122):765–9. https://doi.org/10.1126/science.7688144.

    Article  CAS  PubMed  Google Scholar 

  41. McDermott-Roe C, Ye J, Ahmed R, Sun XM, Serafin A, Ware J, Bottolo L, Muckett P, Canas X, Zhang J, et al. Endonuclease G is a novel determinant of cardiac hypertrophy and mitochondrial function. Nature. 2011;478(7367):114–8. https://doi.org/10.1038/nature10490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Wang W, Li J, Tan J, Wang M, Yang J, Zhang ZM, Li C, Basnakian AG, Tang HW, Perrimon N, Zhou Q. Endonuclease G promotes autophagy by suppressing mTOR signaling and activating the DNA damage response. Nat Commun. 2021;12(1):1–15. https://doi.org/10.1038/s41467-020-20780-2.

    Article  CAS  Google Scholar 

  43. Moscatelli N, Lunetti P, Braccia C, Armirotti A, Pisanello F, De Vittorio M, Zara V, Ferramosca A. Comparative Proteomic Analysis of Proteins Involved in Bioenergetics Pathways Associated with Human Sperm Motility. Int J Mol Sci. 2019;20(12):3000. https://doi.org/10.3390/ijms20123000.

    Article  CAS  PubMed Central  Google Scholar 

  44. Kumar R, Venkatesh S, Kumar M, Tanwar M, Shasmsi MB, Gupta NP, Sharma RK, Talwar P, Dada R. Oxidative stress and sperm mitochondrial DNA mutation in idiopathic oligoasthenozoospermic men. Indian J Biochem Biophys. 2009;46(2):172–7 (PMID: 19517995).

    CAS  PubMed  Google Scholar 

  45. Heidari MM, Khatami M, Danafar A, Dianat T, Farahmand G, Talebi AR. Mitochondrial genetic variation in Iranian infertile men with varicocele. Int J Fertil Steril. 2016;10(3):303–9. https://doi.org/10.22074/ijfs.2016.5047.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank research participants for their contribution. We would like to thank Scientific and Technological Research Council of Turkey (TUBITAK) for financial support of study (Project number: 1919B011902621; M.U.B received the grant under supervision of T.G.). Also, we thank Argenit Technology management for providing DNA FISH probe consumables and supporting the use of their commercial FISH analysis systems ([easyFISH]TM, Argenit Technology).

Funding

This study was supported by funding from Scientific and Technological Research Council of Turkey (TUBITAK), Grant number: 1919B011902621.

Author information

Authors and Affiliations

Authors

Contributions

T.G. and C.E. conceived the study design. T.G. supervised the laboratory work which was carried out by C.E. and M.U.B. Specimen handling and medical assistance for study were conducted by H.G.C. and B.K.B. C.E. and M.U.B. performed the molecular genetics experiments, statistically data analysis and bioinformatics. C.E. wrote the manuscript. T.G., H.G.C. and B.K.B. carried out manuscript drafting and editing. The final version of the manuscript has been read and confirmed by all authors.

Corresponding author

Correspondence to Tuba Gunel.

Ethics declarations

Conflict of interests

The authors declare no conflict of interest.

Ethics approval and consent to participate

Ethical approval of the study was obtained from the Ethics Committee of Istanbul Faculty of Medicine (Istanbul, Turkey; Project No: 26.06.2015–1331). The experiments were performed according to the institutional review board protocols approved for human study participants at the Istanbul University. All the participants provided written informed consent.

Consent for publication

The manuscript has been proofread by all authors enrolled in this study, and they have permitted the submission and publication of this paper.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 102 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Eker, C., Bilir, M.U., Celik, H.G. et al. Assessment of the Role of Nuclear ENDOG Gene and mtDNA Variations on Paternal Mitochondrial Elimination (PME) in Infertile Men: An Experimental Study. Reprod. Sci. 29, 2208–2222 (2022). https://doi.org/10.1007/s43032-022-00953-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00953-8

Keywords

Navigation