Skip to main content

Advertisement

Log in

Dynamic Autophagy Map in Mouse Female Germ Cells Throughout the Fetal to Postnatal Life

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Autophagy plays vital roles in mouse female germ cells, but the potential mechanism is largely unknown. In this study, by interrogating single-cell RNA-seq dataset, we investigated the dynamic expression of autophagy-related genes in seven types of germ cells (mitosis, pre-leptotene, leptotene, zygotene, pachytene, diplotene, and dictyate) and discovered stage-specific autophagy-related genes. Using immunofluorescence (IF) and transmission electron microscopy (TEM), autophagy activity and autophagosome numbers were revealed from mitosis to follicular assembly (E12.5 (embryonic day 12.5) to P5 (postnatal day 5)). Furthermore, single-sample gene set enrichment analysis (ssGSEA) was performed to validate the autophagy kinetics from E12.5 to P5. Our study proved that the mitosis, diplotene, and dictyate female germ cells had relatively higher autophagy activity among the seven subtypes. In summary, our work provided an autophagy map, suggesting that autophagy was complicated in mouse female germ cell development from the fetal to postnatal life, which paved a new insight for deciphering the autophagy regulatory networks for cell-fate transition and female infertility issues like primary ovarian insufficiency (POI).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Code Availability

Code is available from the corresponding author on reasonable request.

References

  1. Levine B, Kroemer G. Autophagy in the pathogenesis of disease. Cell. 2008;132(1):27–42. https://doi.org/10.1016/j.cell.2007.12.018.

    Article  CAS  Google Scholar 

  2. Choi AM, Ryter SW, Levine B. Autophagy in human health and disease. N Engl J Med. 2013;368(7):651–62. https://doi.org/10.1056/NEJMra1205406.

    Article  CAS  Google Scholar 

  3. Lv C, Wang X, Guo Y, Yuan S. Role of selective autophagy in spermatogenesis and male fertility. Cells. 2020;9(11). https://doi.org/10.3390/cells9112523.

  4. Saitou M, Yamaji M. Primordial germ cells in mice. Cold Spring Harb Perspect Biol. 2012;4(11). https://doi.org/10.1101/cshperspect.a008375.

  5. Stevant I, Kuhne F, Greenfield A, Chaboissier MC, Dermitzakis ET, Nef S. Dissecting cell lineage specification and sex fate determination in gonadal somatic cells using single-cell transcriptomics. Cell Rep. 2019;26(12):3272-3283 e3. https://doi.org/10.1016/j.celrep.2019.02.069.

    Article  CAS  Google Scholar 

  6. Wang JJ, Ge W, Zhai QY, Liu JC, Sun XW, Liu WX, et al. Single-cell transcriptome landscape of ovarian cells during primordial follicle assembly in mice. PLoS Biol. 2020;18(12):e3001025. https://doi.org/10.1371/journal.pbio.3001025.

    Article  CAS  Google Scholar 

  7. Sun YC, Sun XF, Dyce PW, Shen W, Chen H. The role of germ cell loss during primordial follicle assembly: a review of current advances. Int J Biol Sci. 2017;13(4):449–57. https://doi.org/10.7150/ijbs.18836.

    Article  Google Scholar 

  8. Niu W, Spradling AC. Two distinct pathways of pregranulosa cell differentiation support follicle formation in the mouse ovary. Proc Natl Acad Sci U S A. 2020;117(33):20015–26. https://doi.org/10.1073/pnas.2005570117.

    Article  CAS  Google Scholar 

  9. Lei L, Spradling AC. Mouse primordial germ cells produce cysts that partially fragment prior to meiosis. Development. 2013;140(10):2075–81. https://doi.org/10.1242/dev.093864.

    Article  CAS  Google Scholar 

  10. Sisti G, Kanninen TT, Ramer I, Witkin SS. Interaction between the inducible 70-kDa heat shock protein and autophagy: effects on fertility and pregnancy. Cell Stress Chaperones. 2015;20(5):753–8. https://doi.org/10.1007/s12192-015-0609-9.

    Article  CAS  Google Scholar 

  11. Delcour C, Amazit L, Patino LC, Magnin F, Fagart J, Delemer B, et al. ATG7 and ATG9A loss-of-function variants trigger autophagy impairment and ovarian failure. Genet Med. 2019;21(4):930–8. https://doi.org/10.1038/s41436-018-0287-y.

    Article  CAS  Google Scholar 

  12. Reig A, Mamillapalli R, Coolidge A, Johnson J, Taylor HS. Uterine cells improved ovarian function in a murine model of ovarian insufficiency. Reprod Sci. 2019;26(12):1633–9. https://doi.org/10.1177/1933719119875818.

    Article  CAS  Google Scholar 

  13. Song ZH, Yu HY, Wang P, Mao GK, Liu WX, Li MN, et al. Germ cell-specific Atg7 knockout results in primary ovarian insufficiency in female mice. Cell Death Dis. 2015;6:e1589. https://doi.org/10.1038/cddis.2014.559.

    Article  CAS  Google Scholar 

  14. Rodrigues P, Limback D, Mcginnis LK, Plancha CE, Albertini DF. Multiple mechanisms of germ cell loss in the perinatal mouse ovary. Reproduction. 2009;137(4):709–20. https://doi.org/10.1530/REP-08-0203.

    Article  CAS  Google Scholar 

  15. Sun YC, Wang YY, Sun XF, Cheng SF, Li L, Zhao Y, et al. The role of autophagy during murine primordial follicle assembly. Aging (Albany NY). 2018;10(2):197–211. https://doi.org/10.18632/aging.101376.

    Article  CAS  Google Scholar 

  16. Gawriluk TR, Hale AN, Flaws JA, Dillon CP, Green DR, Rucker EB 3rd. Autophagy is a cell survival program for female germ cells in the murine ovary. Reproduction. 2011;141(6):759–65. https://doi.org/10.1530/REP-10-0489.

    Article  CAS  Google Scholar 

  17. Satija R, Farrell JA, Gennert D, Schier AF, Regev A. Spatial reconstruction of single-cell gene expression data. Nat Biotechnol. 2015;33(5):495–502. https://doi.org/10.1038/nbt.3192.

    Article  CAS  Google Scholar 

  18. Xin Y, Wang Y, Zhong L, Shi B, Liang H, Han J. Slc25a36 modulates pluripotency of mouse embryonic stem cells by regulating mitochondrial function and glutathione level. Biochem J. 2019;476(11):1585–604. https://doi.org/10.1042/BCJ20190057.

    Article  CAS  Google Scholar 

  19. Kim SM, Yokoyama T, Ng D, Ulu F, Yamazaki Y. Retinoic acid-stimulated ERK1/2 pathway regulates meiotic initiation in cultured fetal germ cells. PLoS ONE. 2019;14(11):e0224628. https://doi.org/10.1371/journal.pone.0224628.

    Article  CAS  Google Scholar 

  20. Lee J, Iwai T, Yokota T, Yamashita M. Temporally and spatially selective loss of Rec8 protein from meiotic chromosomes during mammalian meiosis. J Cell Sci. 2003;116(Pt 13):2781–90. https://doi.org/10.1242/jcs.00495.

    Article  CAS  Google Scholar 

  21. De Vries SS, Baart EB, Dekker M, Siezen A, De Rooij DG, De Boer P, et al. Mouse MutS-like protein Msh5 is required for proper chromosome synapsis in male and female meiosis. Genes Dev. 1999;13(5):523–31. https://doi.org/10.1101/gad.13.5.523.

    Article  Google Scholar 

  22. Yang F, De La Fuente R, Leu NA, Baumann C, Mclaughlin KJ, Wang PJ. Mouse SYCP2 is required for synaptonemal complex assembly and chromosomal synapsis during male meiosis. J Cell Biol. 2006;173(4):497–507. https://doi.org/10.1083/jcb.200603063.

    Article  CAS  Google Scholar 

  23. Dunne OM, Davies OR. A molecular model for self-assembly of the synaptonemal complex protein SYCE3. J Biol Chem. 2019;294(23):9260–75. https://doi.org/10.1074/jbc.RA119.008404.

    Article  Google Scholar 

  24. Tu Z, Bayazit MB, Liu H, Zhang J, Busayavalasa K, Risal S, et al. Speedy A-Cdk2 binding mediates initial telomere-nuclear envelope attachment during meiotic prophase I independent of Cdk2 activation. Proc Natl Acad Sci U S A. 2017;114(3):592–7. https://doi.org/10.1073/pnas.1618465114.

    Article  CAS  Google Scholar 

  25. Kovalenko OV, Wiese C, Schild D. RAD51AP2, a novel vertebrate- and meiotic-specific protein, shares a conserved RAD51-interacting C-terminal domain with RAD51AP1/PIR51. Nucleic Acids Res. 2006;34(18):5081–92. https://doi.org/10.1093/nar/gkl665.

    Article  CAS  Google Scholar 

  26. Guo R, Xu Y, Leu NA, Zhang L, Fuchs SY, Ye L, et al. The ssDNA-binding protein MEIOB acts as a dosage-sensitive regulator of meiotic recombination. Nucleic Acids Res. 2020;48(21):12219–33. https://doi.org/10.1093/nar/gkaa1016.

    Article  CAS  Google Scholar 

  27. Keeney S, Giroux CN, Kleckner N. Meiosis-specific DNA double-strand breaks are catalyzed by Spo11, a member of a widely conserved protein family. Cell. 1997;88(3):375–84. https://doi.org/10.1016/s0092-8674(00)81876-0.

    Article  CAS  Google Scholar 

  28. Zhou J, Stein P, Leu NA, Chmatal L, Xue J, Ma J, et al. Accelerated reproductive aging in females lacking a novel centromere protein SYCP2L. Hum Mol Genet. 2015;24(22):6505–14. https://doi.org/10.1093/hmg/ddv359.

    Article  CAS  Google Scholar 

  29. Soh YQS, Mikedis MM, Kojima M, Godfrey AK, De Rooij DG, Page DC. Meioc maintains an extended meiotic prophase I in mice. PLoS Genet. 2017;13(4):e1006704. https://doi.org/10.1371/journal.pgen.1006704.

    Article  CAS  Google Scholar 

  30. Vernet N, Condrea D, Mayere C, Feret B, Klopfenstein M, Magnant W, et al. Meiosis occurs normally in the fetal ovary of mice lacking all retinoic acid receptors. Sci Adv. 2020;6(21). https://doi.org/10.1126/sciadv.aaz1139.

  31. Baillet A, Le Bouffant R, Volff JN, Luangpraseuth A, Poumerol E, Thepot D, et al. TOPAZ1, a novel germ cell-specific expressed gene conserved during evolution across vertebrates. PLoS ONE. 2011;6(11):e26950. https://doi.org/10.1371/journal.pone.0026950.

    Article  CAS  Google Scholar 

  32. Huntriss J, Lu J, Hemmings K, Bayne R, Anderson R, Rutherford A, et al. Isolation and expression of the human gametocyte-specific factor 1 gene (GTSF1) in fetal ovary, oocytes, and preimplantation embryos. J Assist Reprod Genet. 2017;34(1):23–31. https://doi.org/10.1007/s10815-016-0795-0.

    Article  Google Scholar 

  33. Gura MA, Mikedis MM, Seymour KA, De Rooij DG, Page DC, Freiman RN. Dynamic and regulated TAF gene expression during mouse embryonic germ cell development. PLoS Genet. 2020;16(1):e1008515. https://doi.org/10.1371/journal.pgen.1008515.

    Article  CAS  Google Scholar 

  34. Wang Z, Liu CY, Zhao Y, Dean J. FIGLA, LHX8 and SOHLH1 transcription factor networks regulate mouse oocyte growth and differentiation. Nucleic Acids Res. 2020;48(7):3525–41. https://doi.org/10.1093/nar/gkaa101.

    Article  CAS  Google Scholar 

  35. Marongiu M, Deiana M, Marcia L, Sbardellati A, Asunis I, Meloni A, et al. Novel action of FOXL2 as mediator of Col1a2 gene autoregulation. Dev Biol. 2016;416(1):200–11. https://doi.org/10.1016/j.ydbio.2016.05.022.

    Article  CAS  Google Scholar 

  36. Brown HM, Anastasi MR, Frank LA, Kind KL, Richani D, Robker RL, et al. Hemoglobin: a gas transport molecule that is hormonally regulated in the ovarian follicle in mice and humans. Biol Reprod. 2015;92(1):26. https://doi.org/10.1095/biolreprod.114.124594.

    Article  CAS  Google Scholar 

  37. Richter F, Meurers BH, Zhu C, Medvedeva VP, Chesselet MF. Neurons express hemoglobin alpha- and beta-chains in rat and human brains. J Comp Neurol. 2009;515(5):538–47. https://doi.org/10.1002/cne.22062.

    Article  CAS  Google Scholar 

  38. Shimada M, Mihara T, Kawashima I, Okazaki T. Anti-bacterial factors secreted from cumulus cells of ovulated COCs enhance sperm capacitation during in vitro fertilization. Am J Reprod Immunol. 2013;69(2):168–79. https://doi.org/10.1111/aji.12024.

    Article  CAS  Google Scholar 

  39. Yan C, Wang X, Liu Y, Abdulnour RE, Wu M, Gao H. Protective role of rho guanosine diphosphate dissociation inhibitor, Ly-GDI, in pulmonary alveolitis. PLoS ONE. 2015;10(10):e0140804. https://doi.org/10.1371/journal.pone.0140804.

    Article  CAS  Google Scholar 

  40. Sweet RA, Nickerson KM, Cullen JL, Wang Y, Shlomchik MJ. B Cell-extrinsic Myd88 and Fcer1g negatively regulate autoreactive and normal B cell immune responses. J Immunol. 2017;199(3):885–93. https://doi.org/10.4049/jimmunol.1600861.

    Article  CAS  Google Scholar 

  41. Wong E, Nguyen N, Hellman J. Isolation of primary mouse lung endothelial cells. J Vis Exp. 2021(177). https://doi.org/10.3791/63253.

  42. Groten T, Fraser HM, Duncan WC, Konrad R, Kreienberg R, Wulff C. Cell junctional proteins in the human corpus luteum: changes during the normal cycle and after HCG treatment. Hum Reprod. 2006;21(12):3096–102. https://doi.org/10.1093/humrep/del286.

    Article  CAS  Google Scholar 

  43. Fitch MJ, Campagnolo L, Kuhnert F, Stuhlmann H. Egfl7, a novel epidermal growth factor-domain gene expressed in endothelial cells. Dev Dyn. 2004;230(2):316–24. https://doi.org/10.1002/dvdy.20063.

    Article  CAS  Google Scholar 

  44. Wartalski K, Gorczyca G, Wiater J, Tabarowski Z, Duda M. Porcine ovarian cortex-derived putative stem cells can differentiate into endothelial cells in vitro. Histochem Cell Biol. 2021;156(4):349–62. https://doi.org/10.1007/s00418-021-02016-6.

    Article  CAS  Google Scholar 

  45. Xing T, Benderman LJ, Sabu S, Parker J, Yang J, Lu Q, et al. Tight junction protein claudin-7 is essential for intestinal epithelial stem cell self-renewal and differentiation. Cell Mol Gastroenterol Hepatol. 2020;9(4):641–59. https://doi.org/10.1016/j.jcmgh.2019.12.005.

    Article  Google Scholar 

  46. Ye JL, Gao CQ, Li XG, Jin CL, Wang D, Shu G, et al. EAAT3 promotes amino acid transport and proliferation of porcine intestinal epithelial cells. Oncotarget. 2016;7(25):38681–92. https://doi.org/10.18632/oncotarget.9583.

    Article  Google Scholar 

  47. Kumar S, Jain A, Choi SW, Da Silva GPD, Allers L, Mudd MH, et al. Mammalian Atg8-family proteins are upstream regulators of the lysosomalsystem by controlling MTOR and TFEB. Autophagy. 2020;16(12):2305–6. https://doi.org/10.1080/15548627.2020.1837423.

    Article  CAS  Google Scholar 

  48. Sha Y, Rao L, Settembre C, Ballabio A, Eissa NT. STUB1 regulates TFEB-induced autophagy-lysosome pathway. EMBO J. 2017;36(17):2544–52. https://doi.org/10.15252/embj.201796699.

    Article  CAS  Google Scholar 

  49. Arakawa S, Honda S, Yamaguchi H, Shimizu S. Molecular mechanisms and physiological roles of Atg5/Atg7-independent alternative autophagy. Proc Jpn Acad Ser B Phys Biol Sci. 2017;93(6):378–85. https://doi.org/10.2183/pjab.93.023.

    Article  CAS  Google Scholar 

  50. Mai S, Muster B, Bereiter-Hahn J, Jendrach M. Autophagy proteins LC3B, ATG5 and ATG12 participate in quality control after mitochondrial damage and influence lifespan. Autophagy. 2012;8(1):47–62. https://doi.org/10.4161/auto.8.1.18174.

    Article  CAS  Google Scholar 

  51. Wang M, Xu Y, Zhang Y, Chen Y, Chang G, An G, et al. Deciphering the autophagy regulatory network via single-cell transcriptome analysis reveals a requirement for autophagy homeostasis in spermatogenesis. Theranostics. 2021;11(10):5010–27. https://doi.org/10.7150/thno.55645.

    Article  CAS  Google Scholar 

  52. Wang H, Cheng Q, Li X, Hu F, Han L, Zhang H, et al. Loss of TIGAR induces oxidative stress and meiotic defects in oocytes from obese mice. Mol Cell Proteomics. 2018;17(7):1354–64. https://doi.org/10.1074/mcp.RA118.000620.

    Article  CAS  Google Scholar 

  53. Minge CE, Robker RL, Norman RJ. PPAR Gamma: coordinating metabolic and immune contributions to female fertility. PPAR Res. 2008;2008:243791. https://doi.org/10.1155/2008/243791.

    Article  CAS  Google Scholar 

  54. Cui Y, Miyoshi K, Claudio E, Siebenlist UK, Gonzalez FJ, Flaws J, et al. Loss of the peroxisome proliferation-activated receptor gamma (PPARgamma ) does not affect mammary development and propensity for tumor formation but leads to reduced fertility. J Biol Chem. 2002;277(20):17830–5. https://doi.org/10.1074/jbc.M200186200.

    Article  CAS  Google Scholar 

  55. Lee Y, Kim KH, Yoon H, Lee OH, Kim E, Park M, et al. RASD1 knockdown results in failure of oocyte maturation. Cell Physiol Biochem. 2016;40(6):1289–302. https://doi.org/10.1159/000453182.

    Article  CAS  Google Scholar 

  56. Mtango NR, Sutovsky M, Susor A, Zhong Z, Latham KE, Sutovsky P. Essential role of maternal UCHL1 and UCHL3 in fertilization and preimplantation embryo development. J Cell Physiol. 2012;227(4):1592–603. https://doi.org/10.1002/jcp.22876.

    Article  CAS  Google Scholar 

  57. Mtango NR, Sutovsky M, Vandevoort CA, Latham KE, Sutovsky P. Essential role of ubiquitin C-terminal hydrolases UCHL1 and UCHL3 in mammalian oocyte maturation. J Cell Physiol. 2012;227(5):2022–9. https://doi.org/10.1002/jcp.22931.

    Article  CAS  Google Scholar 

  58. Schaaf MB, Keulers TG, Vooijs MA, Rouschop KM. LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J. 2016;30(12):3961–78. https://doi.org/10.1096/fj.201600698R.

    Article  CAS  Google Scholar 

  59. Mizushima N, Murphy LO. Autophagy assays for biological discovery and therapeutic development. Trends Biochem Sci. 2020;45(12):1080–93. https://doi.org/10.1016/j.tibs.2020.07.006.

    Article  CAS  Google Scholar 

  60. Sharifi MN, Mowers EE, Drake LE, Macleod KF. Measuring autophagy in stressed cells. Methods Mol Biol. 2015;1292:129–50. https://doi.org/10.1007/978-1-4939-2522-3_10.

    Article  CAS  Google Scholar 

  61. Collodel G, Signorini C, Nerucci F, Gambera L, Iacoponi F, Moretti E. Semen biochemical components in varicocele, leukocytospermia, and idiopathic infertility. Reprod Sci. 2021;28(1):91–101. https://doi.org/10.1007/s43032-020-00260-0.

    Article  CAS  Google Scholar 

  62. Perrotta I. The use of electron microscopy for the detection of autophagy in human atherosclerosis. Micron. 2013;50:7–13. https://doi.org/10.1016/j.micron.2013.03.007.

    Article  Google Scholar 

  63. Goyal A, Neill T, Owens RT, Schaefer L, Iozzo RV. Decorin activates AMPK, an energy sensor kinase, to induce autophagy in endothelial cells. Matrix Biol. 2014;34:46–54. https://doi.org/10.1016/j.matbio.2013.12.011.

    Article  CAS  Google Scholar 

  64. Buraschi S, Neill T, Goyal A, Poluzzi C, Smythies J, Owens RT, et al. Decorin causes autophagy in endothelial cells via Peg3. Proc Natl Acad Sci U S A. 2013;110(28):E2582–91. https://doi.org/10.1073/pnas.1305732110.

    Article  Google Scholar 

  65. Giovannetti E, Giaccone G. CYB5A and autophagy-mediated cell death in pancreatic cancer. Autophagy. 2014;10(4):697–8. https://doi.org/10.4161/auto.27803.

    Article  Google Scholar 

  66. Giovannetti E, Wang Q, Avan A, Funel N, Lagerweij T, Lee JH, et al. Role of CYB5A in pancreatic cancer prognosis and autophagy modulation. J Natl Cancer Inst. 2014;106(1):djt346. https://doi.org/10.1093/jnci/djt346.

    Article  CAS  Google Scholar 

  67. Liu P, Liu K, Gu H, Wang W, Gong J, Zhu Y, et al. High autophagic flux guards ESC identity through coordinating autophagy machinery gene program by FOXO1. Cell Death Differ. 2017;24(10):1672–80. https://doi.org/10.1038/cdd.2017.90.

    Article  CAS  Google Scholar 

  68. Warr MR, Binnewies M, Flach J, Reynaud D, Garg T, Malhotra R, et al. FOXO3A directs a protective autophagy program in haematopoietic stem cells. Nature. 2013;494(7437):323–7. https://doi.org/10.1038/nature11895.

    Article  CAS  Google Scholar 

  69. Zhang XJ, Chen S, Huang KX, Le WD. Why should autophagic flux be assessed? Acta Pharmacol Sin. 2013;34(5):595–9. https://doi.org/10.1038/aps.2012.184.

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by grants from the National Natural Science Foundation of China (No. 81971415), and the National Natural Science Foundation of China (No. 32070833).

Author information

Authors and Affiliations

Authors

Contributions

GR Jiang and JX Zhao performed experiments. GR Jiang and L Zhang performed bioinformatics analysis. GR Jiang, L Zhang, JX Zhao, L Li, and ZQ Huang wrote the manuscript. ZJ Wang conceived the study.

Corresponding author

Correspondence to Zhijian Wang.

Ethics declarations

Ethics Approval

All animal operations were approved by the South Medical University Experimental Animal Ethics Committee (L2020101).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, G., Zhang, L., Zhao, J. et al. Dynamic Autophagy Map in Mouse Female Germ Cells Throughout the Fetal to Postnatal Life. Reprod. Sci. 30, 169–180 (2023). https://doi.org/10.1007/s43032-022-00940-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00940-z

Keywords

Navigation