Skip to main content
Log in

Proteome-wide identification of palmitoylated proteins in mouse testis

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The reversible lipid modification, S-palmitoylation, plays regulatory roles in various physiological processes, e.g., neuronal plasticity and organs development; however, the roles of palmitoylation engaged in testis have yet remained unexplored. Here, we used combined approaches of palm-proteomics, informatics and quantitative PCR to systematically analyze the expression of key enzymes related to protein palmitoylation and identify proteome-wide palmitoylated proteins during the processes of spermatogenesis. Specifically, different timepoints were chosen to collect samples to cover the initiation of meiosis (postnatal, P12), the appearance of the first batch of sperm (P36) and fully fertile status (P60) in mouse. Interestingly, our results showed that only a few enzymes related to protein palmitoylation are highly expressed at later stages (from P36 to P60), rather than in the earlier phase of testis development (P12). To focus on the molecular event of spermatogenesis, we examined the palm-proteomics of testes in P36 and P60 mouse. In total, we identified 4,883 palmitoylated proteins, among which 3,310 proteins match the published palmitoyl-proteome datasets and 1,573 proteins were firstly identified as palmitoylated proteins in this study. Informatics analysis suggested that palmitoylation is involved in events of protein transport, metabolic process, protein folding and cell adhesion, etc. Importantly, further analysis revealed that several networks of palmitoylated proteins are closely associated with sperm morphology and motility. Together, our study laid a solid ground for understanding the roles of protein palmitoylation in spermatogenesis for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Chen JJ, Fan Y, Boehning D. Regulation of Dynamic Protein S-Acylation. Front Mol Biosci. 2021;8:656440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Tabaczar S, et al. Protein palmitoylation: Palmitoyltransferases and their specificity. Exp Biol Med (Maywood). 2017;242(11):1150–7.

    Article  CAS  Google Scholar 

  3. Won SJ, Cheung See Kit M, Martin BR. Protein depalmitoylases. Crit Rev Biochem Mol Biol. 2018;53(1):83–98.

    Article  CAS  PubMed  Google Scholar 

  4. Chamberlain LH, Shipston MJ. The physiology of protein S-acylation. Physiol Rev. 2015;95(2):341–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Jin J, et al. Protein palmitoylation and its pathophysiological relevance. J Cell Physiol. 2021;236(5):3220–33.

    Article  CAS  PubMed  Google Scholar 

  6. Zhang Y, et al. Function of Protein S-Palmitoylation in Immunity and Immune-Related Diseases. Front Immunol. 2021;12:661202.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ji B, Skup M. Roles of palmitoylation in structural long-term synaptic plasticity. Mol Brain. 2021;14(1):8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Yi L, Zheng C. The emerging roles of ZDHHCs-mediated protein palmitoylation in the antiviral innate immune responses. Crit Rev Microbiol. 2021;47(1):34–43.

    Article  CAS  PubMed  Google Scholar 

  9. Jansen, M. and B. Beaumelle, How palmitoylation affects trafficking and signaling of membrane receptors. Biol Cell, 2021.

  10. Essandoh K, et al. Palmitoylation: A Fatty Regulator of Myocardial Electrophysiology. Front Physiol. 2020;11:108.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Naumenko VS, Ponimaskin E. Palmitoylation as a Functional Regulator of Neurotransmitter Receptors. Neural Plast. 2018;2018:5701348.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ko, P.J. and S.J. Dixon, Protein palmitoylation and cancer. EMBO Rep, 2018. 19(10).

  13. De I, Sadhukhan S. Emerging Roles of DHHC-mediated Protein S-palmitoylation in Physiological and Pathophysiological Context. Eur J Cell Biol. 2018;97(5):319–38.

    Article  CAS  PubMed  Google Scholar 

  14. Liu Y, et al. Palmitoyl-protein thioesterase 1 (PPT1): an obesity-induced rat testicular marker of reduced fertility. Mol Reprod Dev. 2014;81(1):55–65.

    Article  CAS  PubMed  Google Scholar 

  15. Zhao W, et al. Functional importance of palmitoyl protein thioesterase 1 (PPT1) expression by Sertoli cells in mediating cholesterol metabolism and maintenance of sperm quality. Mol Reprod Dev. 2019;86(8):984–98.

    Article  CAS  PubMed  Google Scholar 

  16. Wang, S., et al., ZDHHC19 Is Dispensable for Spermatogenesis, but Is Essential for Sperm Functions in Mice. Int J Mol Sci, 2021. 22(16).

  17. Mäkelä JA, et al. Testis Development. Endocr Rev. 2019;40(4):857–905.

    Article  PubMed  Google Scholar 

  18. Wan J, et al. Palmitoylated proteins: purification and identification. Nat Protoc. 2007;2(7):1573–84.

    Article  CAS  PubMed  Google Scholar 

  19. Wisniewski JR, et al. Universal sample preparation method for proteome analysis. Nat Methods. 2009;6(5):359–62.

    Article  CAS  PubMed  Google Scholar 

  20. Dimayacyac-Esleta BR, et al. Rapid High-pH Reverse Phase StageTip for Sensitive Small-Scale Membrane Proteomic Profiling. Anal Chem. 2015;87(24):12016–23.

    Article  CAS  PubMed  Google Scholar 

  21. da Huang W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44–57.

    Article  CAS  Google Scholar 

  22. Szklarczyk D, et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47(D1):D607-d613.

    Article  CAS  PubMed  Google Scholar 

  23. Montoto LG, et al. Postnatal testicular development in mouse species with different levels of sperm competition. Reproduction. 2012;143(3):333–46.

    Article  CAS  PubMed  Google Scholar 

  24. Blanc M, David FPA, van der Goot FG. SwissPalm 2: Protein S-Palmitoylation Database. Methods Mol Biol. 2019;2009:203–14.

    Article  CAS  PubMed  Google Scholar 

  25. Blanc M, et al. SwissPalm: Protein Palmitoylation database. F1000Res. 2015;4:261.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Veit M, et al. The alpha-subunits of G-proteins G12 and G13 are palmitoylated, but not amidically myristoylated. FEBS Lett. 1994;339(1–2):160–4.

    Article  CAS  PubMed  Google Scholar 

  27. Morrow IC, et al. Flotillin-1/reggie-2 traffics to surface raft domains via a novel golgi-independent pathway. Identification of a novel membrane targeting domain and a role for palmitoylation. J Biol Chem. 2002;277(50):48834–41.

    Article  CAS  PubMed  Google Scholar 

  28. Rivera-Milla E, Stuermer CA, Málaga-Trillo E. Ancient origin of reggie (flotillin), reggie-like, and other lipid-raft proteins: convergent evolution of the SPFH domain. Cell Mol Life Sci. 2006;63(3):343–57.

    Article  CAS  PubMed  Google Scholar 

  29. Jang D, et al. Essential role of flotillin-1 palmitoylation in the intracellular localization and signaling function of IGF-1 receptor. J Cell Sci. 2015;128(11):2179–90.

    Article  CAS  PubMed  Google Scholar 

  30. Xia Z, et al. GNA13 regulates BCL2 expression and the sensitivity of GCB-DLBCL cells to BCL2 inhibitors in a palmitoylation-dependent manner. Cell Death Dis. 2021;12(1):54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Thinon E, et al. Selective Enrichment and Direct Analysis of Protein S-Palmitoylation Sites. J Proteome Res. 2018;17(5):1907–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Sobocińska J, et al. Lipopolysaccharide Upregulates Palmitoylated Enzymes of the Phosphatidylinositol Cycle: An Insight from Proteomic Studies. Mol Cell Proteomics. 2018;17(2):233–54.

    Article  PubMed  Google Scholar 

  33. Wedegaertner PB, et al. Palmitoylation is required for signaling functions and membrane attachment of Gq alpha and Gs alpha. J Biol Chem. 1993;268(33):25001–8.

    Article  CAS  PubMed  Google Scholar 

  34. Zhang X, et al. Ultradeep Palmitoylomics Enabled by Dithiodipyridine-Functionalized Magnetic Nanoparticles. Anal Chem. 2018;90(10):6161–8.

    Article  CAS  PubMed  Google Scholar 

  35. Gould NS, et al. Site-Specific Proteomic Mapping Identifies Selectively Modified Regulatory Cysteine Residues in Functionally Distinct Protein Networks. Chem Biol. 2015;22(7):965–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Shen LF, et al. Role of S-Palmitoylation by ZDHHC13 in Mitochondrial function and Metabolism in Liver. Sci Rep. 2017;7(1):2182.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Wan J, et al. Tracking brain palmitoylation change: predominance of glial change in a mouse model of Huntington’s disease. Chem Biol. 2013;20(11):1421–34.

    Article  CAS  PubMed  Google Scholar 

  38. Xia B, et al. Widespread Transcriptional Scanning in the Testis Modulates Gene Evolution Rates. Cell. 2020;180(2):248-262 e21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Sohni A, et al. The Neonatal and Adult Human Testis Defined at the Single-Cell Level. Cell Rep. 2019;26(6):1501-1517.e4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Martin BR, Cravatt BF. Large-scale profiling of protein palmitoylation in mammalian cells. Nat Methods. 2009;6(2):135–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kang R, et al. Neural palmitoyl-proteomics reveals dynamic synaptic palmitoylation. Nature. 2008;456(7224):904–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Yue F, et al. A comparative encyclopedia of DNA elements in the mouse genome. Nature. 2014;515(7527):355–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mori Y, et al. Cdc42 is required for male germline niche development in mice. Cell Rep. 2021;36(7):109550.

    Article  CAS  PubMed  Google Scholar 

  44. Heinrich A, et al. Cdc42 activity in Sertoli cells is essential for maintenance of spermatogenesis. Cell Rep. 2021;37(4):109885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Teves, M.E., et al., Sperm Differentiation: The Role of Trafficking of Proteins. Int J Mol Sci, 2020. 21(10).

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 31870773 to Z.J.Z. and No. 31770824 to E.Y.K.), Key Technologies Research and Development Program of Henan Province (212102311072) and Ph.D. Research Program of Xinxiang Medical University (505318) to W.S.G.

Author information

Authors and Affiliations

Authors

Contributions

J.G. was involved in data acquisition and analysis, validation and writing. W.C.L. was involved in methodology and data acquisition; W.S.G. was involved in data curation and software analysis. Z.J.Z. was involved in resources, funding and project administration. E.Y.K. was involved in conceptualization, funding acquisition, and writing—review & editing. All authors approved the final version.

Corresponding authors

Correspondence to Wenshan Gao or Eryan Kong.

Ethics declarations

Ethics Approval

All animal procedures were performed according to guidelines approved by the committee on animal care at Xinxiang medical university. The approval number of the animal experiment is XXLL-20210312.

Consent for Publication

All the authors listed have approved the manuscript that is enclosed.

Competing Interests

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, J., Li, W., Zhang, Z. et al. Proteome-wide identification of palmitoylated proteins in mouse testis. Reprod. Sci. 29, 2299–2309 (2022). https://doi.org/10.1007/s43032-022-00919-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00919-w

Keywords

Navigation