Skip to main content
Log in

Macrophages Protect Endometriotic Cells Against Oxidative Damage Through a Cross-Talk Mechanism

  • Endometriosis: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

This aim of this study was to investigate whether macrophages protect endometriotic cells from oxidative injury and to elucidate the underlying mechanisms of any protection. Endometriotic cells cultured with or without differentiated macrophages (dTHP-1 cells) were treated with hydrogen peroxide (H2O2) or methemoglobin, a major component of hemoglobin species in endometriotic cyst fluid. Co-culture experiments, microarray analysis, screening and validation of differentially expressed genes (DEGs), cell proliferation and viability assays, and experiments using a specific inhibitor were conducted to investigate the functional cross-talk between endometriotic cells and macrophages. Microarray analysis revealed that endometriotic cells co-cultured with dTHP-1 differentially express several genes compared with monoculture. Quantitative enzyme-linked immunosorbent assay (ELISA) and Western blotting analysis identified TGF-β1 as a promising candidate gene expressed in endometriotic cells co-cultured with dTHP-1 cells. TGF-β1 stimulated the expression of heme oxygenase-1 (HO-1) in dTHP-1 cells. HO-1 expression was increased in dTHP-1 cells co-cultured with endometriotic cells compared with the dTHP-1 monoculture. Both H2O2 and methemoglobin upregulated the expression of the HO-1 protein in the dTHP-1 monoculture; moreover, co-culture with endometriotic cells further enhanced HO-1 production. The co-culture with dTHP-1 protected endometriotic cells against oxidative injury. Blockade of HO-1 abolished the protective effects of macrophages. In an oxidative stress environment, TGF-β1 produced by endometriotic cells may protect against oxidative injury through the upregulation of macrophage-derived HO-1. The cross-talk between endometriotic cells and macrophages may contribute to the progression and pathogenesis of endometriosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during the current study are available from Hiroshi Kobayashi.

References

  1. Scutiero G, Iannone P, Bernardi G, Bonaccorsi G, Spadaro S, Volta CA, Greco P, Nappi L. Oxidative stress and endometriosis: a systematic review of the literature. Oxid Med Cell Longev. 2017;2017:7265238.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Iwabuchi T, Yoshimoto C, Shigetomi H, Kobayashi H. Oxidative stress and antioxidant defense in endometriosis and its malignant transformation. Oxid Med Cell Longev. 2015;2015:848595.

  3. Iwabuchi T, Yoshimoto C, Shigetomi H, Kobayashi H. Cyst fluid hemoglobin species in endometriosis and its malignant transformation: the role of metallobiology. Oncol Lett. 2016;11(5):3384–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chobot V, Hadacek F. Iron and its complexation by phenolic cellular metabolites: from oxidative stress to chemical weapons. Plant Signal Behav. 2010;5(1):4–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smith KA, Pearson CB, Hachey AM, Xia DL, Wachtman LM. Alternative activation of macrophages in rhesus macaques (Macaca mulatta) with endometriosis. Comp Med. 2012;62(4):303–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Hogg C, Horne AW, Greaves E. Endometriosis-associated macrophages: origin, phenotype, and function. Front Endocrinol (Lausanne). 2020;11:7.

    Article  Google Scholar 

  7. Donnez J, Binda MM, Donnez O, Dolmans MM. Oxidative stress in the pelvic cavity and its role in the pathogenesis of endometriosis. Fertil Steril. 2016;106(5):1011–7.

    Article  CAS  PubMed  Google Scholar 

  8. Yamada Y, Uchiyama T, Ito F, Kawahara N, Ogawa K, Obayashi C, et al. Clinical significance of M2 macrophages expressing heme oxygenase-1 in malignant transformation of ovarian endometrioma. Pathol Res Pract. 2019;215(4):639–43.

    Article  CAS  PubMed  Google Scholar 

  9. Jensen AL, Collins J, Shipman EP, Wira CR, Guyre PM, Pioli PA. A subset of human uterine endometrial macrophages is alternatively activated. Am J Reprod Immunol. 2012;68(5):374–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Ono Y, Yoshino O, Hiraoka T, Sato E, Furue A, Nawaz A, et al. CD206+ macrophage is an accelerator of endometriotic-like lesion via promoting angiogenesis in the endometriosis mouse model. Sci Rep. 2021;11(1):853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cacciottola L, Donnez J, Dolmans MM. Can endometriosis-related oxidative stress pave the way for new treatment targets? Int J Mol Sci. 2021;22(13):7138.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, et al. Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 2009;175(2):547–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Khan KN, Masuzaki H, Fujishita A, Kitajima M, Sekine I, Ishimaru T. Differential macrophage infiltration in early and advanced endometriosis and adjacent peritoneum. Fertil Steril. 2004;81(3):652–61.

    Article  PubMed  Google Scholar 

  14. Johnston ST. Isolation, characterization, and comparison of human endometrial and endometriosis cells in vitro. J Clin Endocrinol Metab. 1994;78(3):642–9.

    Google Scholar 

  15. Tulac S, Overgaard MT, Hamilton AE, Jumbe NL, Suchanek E, Giudice LC. Dickkopf-1, an inhibitor of Wnt signaling, is regulated by progesterone in human endometrial stromal cells. J Clin Endocrinol Metab. 2006;91(4):1453–61.

    Article  CAS  PubMed  Google Scholar 

  16. Yotova IY, Quan P, Leditznig N, Beer U, Wenzl R, Tschugguel W. Abnormal activation of Ras/Raf/MAPK and RhoA/ROCKII signalling pathways in eutopic endometrial stromal cells of patients with endometriosis. Hum Reprod. 2011;26(4):885–97.

    Article  CAS  PubMed  Google Scholar 

  17. Machado-Linde F, Sánchez-Ferrer ML, Cascales P, Torroba A, Orozco R, Silva Sánchez Y, et al. Prevalence of endometriosis in epithelial ovarian cancer. Analysis of the associated clinical features and study on molecular mechanisms involved in the possible causality. Eur J Gynaecol Oncol. 2015; 36(1):21–24.

  18. Bono Y, Kyo S, Takakura M, Maida Y, Mizumoto Y, Nakamura M, et al. Creation of immortalised epithelial cells from ovarian endometrioma. Br J Cancer. 2012;106(6):1205–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Alayash AI. Oxygen therapeutics: can we tame haemoglobin? Nat Rev Drug Discov. 2004;3(2):152–9.

    Article  CAS  PubMed  Google Scholar 

  20. Carmichael J, DeGraff WG, Gazdar AF, Minna JD, Mitchell JB. Evaluation of a tetrazolium-based semiautomated colorimetric assay: assessment of chemosensitivity testing. Cancer Res. 1987;47(4):936–42.

    CAS  PubMed  Google Scholar 

  21. Johnston ST, Shah ET, Chopin LK, Sean McElwain DL, Simpson MJ. Estimating cell diffusivity and cell proliferation rate by interpreting IncuCyte ZOOM™ assay data using the Fisher-Kolmogorov model. BMC Syst Biol. 2015;9:38.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Chang KK, Liu LB, Jin LP, Zhang B, Mei J, Li H, et al. IL-27 triggers IL-10 production in Th17 cells via a c-Maf/RORγt/Blimp-1 signal to promote the progression of endometriosis. Cell Death Dis. 2017;8(3):e2666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Liu YG, Tekmal RR, Binkley PA, Nair HB, Schenken RS, Kirma NB. Induction of endometrial epithelial cell invasion and c-fms expression by transforming growth factor beta. Mol Hum Reprod. 2009;15(10):665–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Li S, Fu X, Wu T, Yang L, Hu C, Wu R. Role of interleukin-6 and its receptor in endometriosis. Med Sci Monit. 2017;23:3801–7.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Zhou WJ, Hou XX, Wang XQ, Li DJ. The CCL17-CCR4 axis between endometrial stromal cells and macrophages contributes to the high levels of IL-6 in ectopic milieu. Am J Reprod Immunol. 2017;78(2).

  26. Pacchiarotti A, Caserta D, Sbracia M, Moscarini M. Expression of oct-4 and c-kit antigens in endometriosis. Fertil Steril. 2011;95(3):1171–3.

    Article  CAS  PubMed  Google Scholar 

  27. Kobayashi H, Yamada Y, Morioka S, Niiro E, Shigemitsu A, Ito F. Mechanism of pain generation for endometriosis-associated pelvic pain. Arch Gynecol Obstet. 2014;289(1):13–21.

    Article  CAS  PubMed  Google Scholar 

  28. Sui C, Mecha E, Omwandho CO, Starzinski-Powitz A, Stammler A, Tinneberg HR, et al. PAI-1 secretion of endometrial and endometriotic cells is Smad2/3- and ERK1/2-dependent and influences cell adhesion. Am J Transl Res. 2016;8(5):2394–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Chinetti-Gbaguidi G, Bouhlel MA, Copin C, Duhem C, Derudas B, Neve B, et al. Peroxisome proliferator-activated receptor-γ activation induces 11β-hydroxysteroid dehydrogenase type 1 activity in human alternative macrophages. Arterioscler Thromb Vasc Biol. 2012;32(3):677–85.

    Article  CAS  PubMed  Google Scholar 

  30. Abrial C, Grassin-Delyle S, Salvator H, Brollo M, Naline E, Devillier P. 15-Lipoxygenases regulate the production of chemokines in human lung macrophages. Br J Pharmacol. 2015;172(17):4319–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Soldano S, Pizzorni C, Paolino S, Trombetta AC, Montagna P, Brizzolara R, et al. Alternatively activated (M2) macrophage phenotype is inducible by endothelin-1 in cultured human macrophages. PLoS One. 2016;11(11):e0166433.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Gu W, Yao L, Li L, Zhang J, Place AT, Minshall RD, et al. ICAM-1 regulates macrophage polarization by suppressing MCP-1 expression via miR-124 upregulation. Oncotarget. 2017;8(67):111882–901.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Das SK, Chakraborty I, Paria BC, Wang XN, Plowman G, Dey SK. Amphiregulin is an implantation-specific and progesterone-regulated gene in the mouse uterus. Mol Endocrinol. 1995;9(6):691–705.

    CAS  PubMed  Google Scholar 

  34. Zarjou A, Agarwal A. Heme oxygenase-1 as a target for TGF-β in kidney disease. Semin Nephrol. 2012;32(3):277–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Philippidis P, Mason JC, Evans BJ, Nadra I, Taylor KM, Haskard DO, et al. Hemoglobin scavenger receptor CD163 mediates interleukin-10 release and heme oxygenase-1 synthesis: antiinflammatory monocyte-macrophage responses in vitro, in resolving skin blisters in vivo, and after cardiopulmonary bypass surgery. Circ Res. 2004;94(1):119–26.

    Article  CAS  PubMed  Google Scholar 

  36. Mandal P, Pritchard MT, Nagy LE. Anti-inflammatory pathways and alcoholic liver disease: role of an adiponectin/interleukin-10/heme oxygenase-1 pathway. World J Gastroenterol. 2010;16(11):1330–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Wu J, Xie H, Yao S, Liang Y. Macrophage and nerve interaction in endometriosis. J Neuroinflammation. 2017;14(1):53.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sikora J, Smycz-Kubańska M, Mielczarek-Palacz A, Bednarek I, Kondera-Anasz Z. The involvement of multifunctional TGF-β and related cytokines in pathogenesis of endometriosis. Immunol Lett. 2018;201:31–7.

    Article  CAS  PubMed  Google Scholar 

  39. Suen JL, Chang Y, Chiu PR, Hsieh TH, Hsi E, Chen YC, et al. Serum level of IL-10 is increased in patients with endometriosis, and IL-10 promotes the growth of lesions in a murine model. Am J Pathol. 2014;184(2):464–71.

    Article  CAS  PubMed  Google Scholar 

  40. Yang HL, Zhou WJ, Chang KK, Mei J, Huang LQ, Wang MY, et al. The crosstalk between endometrial stromal cells and macrophages impairs cytotoxicity of NK cells in endometriosis by secreting IL-10 and TGF-β. Reproduction. 2017;154(6):815–25.

    Article  CAS  PubMed  Google Scholar 

  41. Park SB, Park JS, Jung WH, Kim HY, Kwak HJ, Ahn JH, et al. Anti-inflammatory effect of a selective 11β-hydroxysteroid dehydrogenase type 1 inhibitor via the stimulation of heme oxygenase-1 in LPS-activated mice and J774.1 murine macrophages. J Pharmacol Sci. 2016;131(4):241–50.

    Article  CAS  PubMed  Google Scholar 

  42. Menon D, Coll R, O’Neill LA, Board PG. Glutathione transferase omega 1 is required for the lipopolysaccharide-stimulated induction of NADPH oxidase 1 and the production of reactive oxygen species in macrophages. Free Radic Biol Med. 2014;73:318–27.

    Article  CAS  PubMed  Google Scholar 

  43. Abraham NG, Kappas A. Pharmacological and clinical aspects of heme oxygenase. Pharmacol Rev. 2008;60(1):79–127.

    Article  CAS  PubMed  Google Scholar 

  44. Yoshimoto C, Iwabuchi T, Shigetomi H, Kobayashi H. Cyst fluid iron-related compounds as useful markers to distinguish malignant transformation from benign endometriotic cysts. Cancer Biomark. 2015;15(4):493–9.

    Article  CAS  PubMed  Google Scholar 

  45. Han D, Chen W, Gu X, Shan R, Zou J, Liu G, et al. Cytoprotective effect of chlorogenic acid against hydrogen peroxide-induced oxidative stress in MC3T3-E1 cells through PI3K/Akt-mediated Nrf2/HO-1 signaling pathway. Oncotarget. 2017;8(9):14680–92.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Castilho Á, Aveleira CA, Leal EC, Simões NF, Fernandes CR, Meirinhos RI, et al. Heme oxygenase-1 protects retinal endothelial cells against high glucose- and oxidative/nitrosative stress-induced toxicity. PLoS One. 2012;7(8):e42428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seiwert N, Wecklein S, Demuth P, Hasselwander S, Kemper TA, Schwerdtle T, et al. Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron. Cell Death Dis. 2020;11(9):787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Loboda A, Jozkowicz A, Dulak J. HO-1/CO system in tumor growth, angiogenesis and metabolism - targeting HO-1 as an anti-tumor therapy. Vascul Pharmacol. 2015;74:11–22.

    Article  CAS  PubMed  Google Scholar 

  49. Mosser DM, Edwards JP. Exploring the full spectrum of macrophage activation. Nat Rev Immunol. 2008;8(12):958–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Genin M, Clement F, Fattaccioli A, Raes M, Michiels C. M1 and M2 macrophages derived from THP-1 cells differentially modulate the response of cancer cells to etoposide. BMC Cancer. 2015;15:577.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Vetvicka V, Laganà AS, Salmeri FM, Triolo O, Palmara VI, Vitale SG, Sofo V, Králíčková M. Regulation of apoptotic pathways during endometriosis: from the molecular basis to the future perspectives. Arch Gynecol Obstet. 2016;294(5):897–904.

    Article  CAS  PubMed  Google Scholar 

  52. Marinho HS, Real C, Cyrne L, Soares H, Antunes F. Hydrogen peroxide sensing, signaling and regulation of transcription factors. Redox Biol. 2014;2:535–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sykiotis GP, Habeos IG, Samuelson AV, Bohmann D. The role of the antioxidant and longevity-promoting Nrf2 pathway in metabolic regulation. Curr Opin Clin Nutr Metab Care. 2011;14(1):41–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Haines DD, Lekli I, Teissier P, Bak I, Tosaki A. Role of haeme oxygenase-1 in resolution of oxidative stress-related pathologies: focus on cardiovascular, lung, neurological and kidney disorders. Acta Physiol (Oxf). 2012;204(4):487–501.

    Article  CAS  Google Scholar 

  55. Riemma G, Laganà AS, Schiattarella A, Garzon S, Cobellis L, Autiero R, Licciardi F, Della Corte L, La Verde M, De Franciscis P. Ion channels in the pathogenesis of endometriosis: a cutting-edge point of view. Int J Mol Sci. 2020;21(3):1114.

    Article  CAS  PubMed Central  Google Scholar 

  56. Santanam N, Murphy AA, Parthasarathy S. Macrophages, oxidation, and endometriosis. Ann N Y Acad Sci. 2002;955:183–98.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Toyomi Kobayashi for creating the figure.

Funding

This work was supported by Japan Society for Promotion of Science Japan (grant nos. 20K09604, 20K09647 and 20K09648).

Author information

Authors and Affiliations

Authors

Contributions

Hiroshi Kobayashi contributed to the study conception and design. Kenji Ogawa was involved in all the experiments in this study. Naoki Kawahara and Tingting Liu helped with cell culture experiments and western blotting. The data analysis was performed by Kenji Ogawa and Naoki Kawahara. The first draft of the manuscript was written by Hiroshi Kobayashi. The final version of the manuscript has been read and approved by all authors.

Corresponding author

Correspondence to Hiroshi Kobayashi.

Ethics declarations

Ethical approval

The research comprises several basic and clinical study designs. This manuscript conforms to the EQUATOR network guidelines. Our study meets checklists of the STROBE Statement (http://www.strobe-statement.org/).

Human and Animal Rights

The study was conducted under the guidelines that had been approved by the medical ethics committee of the Nara Medical University (reference no. 1587). This article does not contain any animal studies that have been performed by any of the authors.

Patient Consent for Publication

Written informed consent was obtained from each patient. Human rights statements and informed consent: All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and its later amendments.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ogawa, K., Liu, T., Kawahara, N. et al. Macrophages Protect Endometriotic Cells Against Oxidative Damage Through a Cross-Talk Mechanism. Reprod. Sci. 29, 2165–2178 (2022). https://doi.org/10.1007/s43032-022-00890-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00890-6

Keywords

Navigation