Skip to main content

Advertisement

Log in

Circular RNAs: Novel Biomarkers in Spermatogenesis Defects and Male Infertility

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Circular RNAs (circRNAs) are a new class of endogenous non-coding RNAs involved in several cellular and biological processes, including gene expression regulation, microRNA function, transcription regulation, and translation modification. Therefore, these non-coding RNAs have important roles in the pathogenesis of various diseases. Male infertility is mainly due to abnormal sperm parameters such as motility, morphology, and concentration. Recent studies have confirmed the role of circRNAs in spermatogenesis, and the expression of several circRNAs is confirmed in seminal plasma, spermatozoa, and testicular tissue. It is suggested that deregulation of circRNAs is involved in different types of male infertility, including azoospermia, oligozoospermia, and asthenozoospermia. In the present review, we aimed to discuss the potential roles of circRNAs in spermatogenesis failure, sperm defects, and male infertility. Due to their conserved and special structure and tissue-specific expression pattern, circRNAs can be applied as reliable noninvasive molecular biomarkers, therapeutic and pharmaceutical targets in male infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Krausz C, Escamilla A, Chianese C. Genetics of male infertility: from research to clinic. Reproduction. 2015;150(5):R159–74. https://doi.org/10.1530/REP-15-0261.

    Article  CAS  Google Scholar 

  2. World Health Organization. WHO laboratory manual for the examination and processing of human semen, 5th ed. World Health Organization;2010.

  3. McSwiggin HM, O’Doherty AM. Epigenetic reprogramming during spermatogenesis and male factor infertility. Reproduction. 2018;156(2):R9–21. https://doi.org/10.1530/REP-18-0009.

    Article  CAS  Google Scholar 

  4. Gunes S, Arslan MA, Hekim GNT, Asci R. The role of epigenetics in idiopathic male infertility. J Assist Reprod Gen. 2016;33(5):553–69. https://doi.org/10.1007/s10815-016-0682-8.

    Article  Google Scholar 

  5. Gunes S, Esteves SC. Role of genetics and epigenetics in male infertility. Andrologia. 2021;53(1): e13586. https://doi.org/10.1111/and.13586.

    Article  Google Scholar 

  6. Robles V, Valcarce DG, Riesco MF. Non-coding RNA regulation in reproduction: their potential use as biomarkers. Noncoding RNA Res. 2019; 3;4(2):54-62. doi: https://doi.org/10.1016/j.ncrna.2019.04.001.

  7. Liu K, Mao X, Chen Y, Li T, Ton H. Regulatory role of long non-coding RNAs during reproductive disease. Am J Transl Res. 2018; 15;10(1):1-12.

  8. Liu K-S, Mao X-D, Pan F, Gao L-J, Ling X-F. Role of related regulatory long noncoding RNAs on mammalian spermatogenesis. Reprod Dev Med. 2017;1:18–22. https://doi.org/10.4103/2096-2924.210690.

    Article  Google Scholar 

  9. Zhou F, Chen W, Jiang Y, He Z. Regulation of long non-coding RNAs and circular RNAs in spermatogonial stem cells. Reproduction. 2019;158(1):R15–25. https://doi.org/10.1530/REP-18-0517.

    Article  CAS  Google Scholar 

  10. Lu H, Xu D, Wang P, Sun W, Xue X, Hu Y et al. RNA-sequencing and bioinformatics analysis of long noncoding RNAs and mRNAs in the asthenozoospermia. Biosci Rep. 2020; 31;40(7):BSR20194041. https://doi.org/10.1042/BSR20194041.

  11. Hasheminiya T, Saberiyan M, Gholami D, Teimori H. miR-508-5p and mir-510-5p expressions and their relationships with spermatozoa motility and morphology. J Shahrekord Univ Med Sci. 2020;22(3):146–50. https://doi.org/10.34172/jsums.2020.23.

    Article  Google Scholar 

  12. Gholami D, Yazdi RS, Jami M-S, Ghasemi S, Gilani M-AS, Sadeghinia S et al. The expression of Cysteine-Rich Secretory Protein 2 (CRISP2) and miR-582-5p in seminal plasma fluid and spermatozoa of infertile men. Gene. 2020; 10;730:144261.doi: https://doi.org/10.1016/j.gene.2019.144261.

  13. Ata-Abadi NS, Mowla SJ, Aboutalebi F, Dormiani K, Kiani-Esfahani A, Tavalaee M, Nasr-Esfahani MH. Hypoxia-related long noncoding RNAs are associated with varicocele-related male infertility. PLoS ONE. 2020;15(4): e0232357. https://doi.org/10.1371/journal.pone.0232357.

    Article  CAS  Google Scholar 

  14. Liu K-S, Li T-P, Ton H, Mao X-D, Chen Y-J. Advances of long noncoding RNAs-mediated regulation in reproduction. Chin Med J (Engl). 2018; 20;131(2):226-234. doi: https://doi.org/10.4103/0366-6999.222337.

  15. Saberiyan M, Mirfakhraie R, Moghni M, Teimori H. Study of Linc00574 Regulatory effect on the TCTE3 expression in sperm motility. Reprod Sci. 2021;28(1):159–65. https://doi.org/10.1007/s43032-020-00275-7.

    Article  CAS  Google Scholar 

  16. Saberiyan M, Mirfakhraie R, Gholami D, Dehdehi L, Teimori H. Investigating the regulatory function of the ANO1-AS2 on the ANO1 gene in infertile men with asthenozoospermia and terato-asthenozoospermia. Exp Mol Pathol. 2020;117: 104528. https://doi.org/10.1016/j.yexmp.2020.104528.

    Article  CAS  Google Scholar 

  17. Xin R, Gao Y, Gao Y, Wang R, Kadash-Edmondson KE, Liu B et al. isoCirc catalogs full-length circular RNA isoforms in human transcriptomes. Nat Commun. 2021; 12;12(1):266. doi: https://doi.org/10.1038/s41467-020-20459-8.

  18. Chen L-L, Yang L. Regulation of circRNA biogenesis. RNA Biol. 2015;12(4):381–8. https://doi.org/10.1080/15476286.2015.1020271.

    Article  Google Scholar 

  19. Qu S, Yang X, Li X, Wang J, Gao Y, Shang R et al. Circular RNA: a new star of noncoding RNAs. Cancer Lett. 2015; 1;365(2):141-8. doi: https://doi.org/10.1016/j.canlet.2015.06.003.

  20. Gong L, Zhou X, Sun J. Circular RNAs interaction with MiRNAs: emerging roles in breast cancer. Int J Med Sci. 2021; 11;18(14):3182-3196. doi: https://doi.org/10.7150/ijms.62219.

  21. Quan G, Li J. Circular RNAs: biogenesis, expression and their potential roles in reproduction. J Ovarian Res. 2018; 17;11(1):9. doi: https://doi.org/10.1186/s13048-018-0381-4.

  22. Zaphiropoulos PG. Exon skipping and circular RNA formation in transcripts of the human cytochrome P-450 2C18 gene in epidermis and of the rat androgen binding protein gene in testis. Mol Cell Biol. 1997;17(6):2985–93. https://doi.org/10.1128/MCB.17.6.2985.

    Article  CAS  Google Scholar 

  23. Qian Y, Lu Y, Rui C, Qian Y, Cai M, Jia R. Potential significance of circular RNA in human placental tissue for patients with preeclampsia. Cell Physiol Biochem. 2016;39(4):1380–90. https://doi.org/10.1159/000447842.

    Article  CAS  Google Scholar 

  24. Greene J, Baird A-M, Brady L, Lim M, Gray SG, McDermott R, et al. Circular RNAs: biogenesis, function and role in human diseases. Front Mol Biosci. 2017;6(4):38. https://doi.org/10.3389/fmolb.2017.00038.

    Article  CAS  Google Scholar 

  25. Ma S, Kong S, Wang F, Ju S. CircRNAs: biogenesis, functions, and role in drug-resistant tumours. Mol Cancer. 2020; 5;19(1):119. doi: https://doi.org/10.1186/s12943-020-01231-4.

  26. Shang Q, Yang Z, Jia R, Ge S. The novel roles of circRNAs in human cancer. Mol Cancer. 2019; 9;18(1):6. doi: https://doi.org/10.1186/s12943-018-0934-6.

  27. Wu J, Qi X, Liu L, Hu X, Liu J, Yang J, et al. Emerging epigenetic regulation of circular RNAs in human cancer. Mol Ther Nucleic Acids. 2019;7(16):589–96. https://doi.org/10.1016/j.omtn.2019.04.011.

    Article  CAS  Google Scholar 

  28. Yang Z, Xie L, Han L, Qu X, Yang Y, Zhang Y, et al. Circular RNAs: regulators of cancer-related signaling pathways and potential diagnostic biomarkers for human cancers. Theranostics. 2017;7(12):3106–17. https://doi.org/10.7150/thno.19016.

    Article  CAS  Google Scholar 

  29. Lu M. Circular RNA: functions, applications and prospects. ExRNA. 2020;2(1):1. https://doi.org/10.1186/s41544-019-0046-5.

    Article  Google Scholar 

  30. Tao H, Xiong Q, Zhang F, Zhang N, Liu Y, Suo X et al. Circular RNA profiling reveals chi_circ_0008219 function as microRNA sponges in pre-ovulatory ovarian follicles of goats (Capra hircus). Genomics. 2017; 26;S0888-7543(17)30129-5. doi: https://doi.org/10.1016/j.ygeno.2017.10.005.

  31. Zhou W-Y, Cai Z-R, Liu J, Wang D-S, Ju H-Q, Xu R-H. Circular RNA: metabolism, functions and interactions with proteins. Mol Cancer. 2020; 14;19(1):172. doi: https://doi.org/10.1186/s12943-020-01286-3.

  32. Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z, et al. Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 2017;24(2):357–70. https://doi.org/10.1038/cdd.2016.133.

    Article  CAS  Google Scholar 

  33. Du WW, Yang W, Liu E, Yang Z, Dhaliwal P, Yang BB. Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 2016;44(6):2846–58. https://doi.org/10.1093/nar/gkw027.

    Article  Google Scholar 

  34. Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, et al. A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 2017;24(9):1609–20. https://doi.org/10.1038/cdd.2017.86.

    Article  CAS  Google Scholar 

  35. Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X et al. A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 2017; 29;7(16):3842-3855. doi: https://doi.org/10.7150/thno.19764.

  36. Yu C-Y, Kuo H-C. The emerging roles and functions of circular RNAs and their generation. J Biomed Sci. 2019;26(1):29. https://doi.org/10.1186/s12929-019-0523-z.

    Article  Google Scholar 

  37. Du WW, Yang W, Li X, Awan FM, Yang Z, Fang L, et al. A circular RNA circ-DNMT1 enhances breast cancer progression by activating autophagy. Oncogene. 2018;37(44):5829–42. https://doi.org/10.1038/s41388-018-0369-y.

    Article  CAS  Google Scholar 

  38. Lei M, Zheng G, Ning Q, Zheng J, Dong D. Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 2020;19(1):30. https://doi.org/10.1186/s12943-020-1135-7.

    Article  CAS  Google Scholar 

  39. Sinha T, Panigrahi C, Das D, Chandra PA. Circular RNA translation, a path to hidden proteome. Wiley Interdiscip Rev RNA. 2021;2: e1685. https://doi.org/10.1002/wrna.1685.

    Article  CAS  Google Scholar 

  40. Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D et al. The role of N(6)-methyladenosine (m(6)A) modification in the regulation of circRNAs. Mol Cancer. 2020;19(1):105-. doi:https://doi.org/10.1186/s12943-020-01224-3.

  41. Diallo LH, Tatin F, David F, Godet AC, Zamora A, Prats AC, et al. How are circRNAs translated by non-canonical initiation mechanisms? Biochimie. 2019;164:45–52. https://doi.org/10.1016/j.biochi.2019.06.015.

    Article  CAS  Google Scholar 

  42. Prats A-C, David F, Diallo LH, Roussel E, Tatin F, Garmy-Susini B et al. Circular RNA, the key for translation. Int J Mol Sci. 2020; 14;21(22):8591. doi: https://doi.org/10.3390/ijms21228591.

  43. He X, Xu T, Hu W, Tan Y, Wang D, Wang Y et al. Circular RNAs: their role in the pathogenesis and orchestration of breast cancer. Front Cell Dev Biol. 2021;9:647736-. doi:https://doi.org/10.3389/fcell.2021.647736.

  44. Shan C, Zhang Y, Hao X, Gao J, Chen X, Wang K. Biogenesis, functions and clinical significance of circRNAs in gastric cancer. Mol Cancer. 2019;18(1):136. https://doi.org/10.1186/s12943-019-1069-0.

    Article  CAS  Google Scholar 

  45. Shao T, Pan YH, Xiong XD. Circular RNA: an important player with multiple facets to regulate its parental gene expression. Mol Ther Nucleic Acids. 2020;17(23):369–76. https://doi.org/10.1016/j.omtn.2020.11.008.

    Article  CAS  Google Scholar 

  46. Chao CW, Chan DC, Kuo A, Leder P. The mouse formin (Fmn) gene: abundant circular RNA transcripts and gene-targeted deletion analysis. Mol Med. 1998;4(9):614–28.

    Article  CAS  Google Scholar 

  47. Gualandi F, Trabanelli C, Rimessi P, Calzolari E, Toffolatti L, Patarnello T, et al. Multiple exon skipping and RNA circularisation contribute to the severe phenotypic expression of exon 5 dystrophin deletion. J Med Genet. 2003;40(8): e100. https://doi.org/10.1136/jmg.40.8.e100.

    Article  CAS  Google Scholar 

  48. Wang R-S, Yeh S, Tzeng C-R, Chang C. Androgen receptor roles in spermatogenesis and fertility: lessons from testicular cell-specific androgen receptor knockout mice. Endocr Rev. 2009;30(2):119–32. https://doi.org/10.1210/er.2008-0025.

    Article  CAS  Google Scholar 

  49. de Kretser DM, Loveland KL, Meinhardt A, Simorangkir D, Wreford N. Spermatogenesis. Hum Reprod. 1998;13(suppl_1):1-8. doi:https://doi.org/10.1093/humrep/13.suppl_1.1.

  50. Dong W-W, Li H-M, Qing X-R, Huang D-H, Li H-G. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci Rep. 2016;13(6):39080. https://doi.org/10.1038/srep39080.

    Article  CAS  Google Scholar 

  51. L’Hernault SW. Spermatogenesis WormBook. 2006;20:1–14. https://doi.org/10.1895/wormbook.1.85.1.

    Article  Google Scholar 

  52. Tsai M-Y, Yeh S-D, Wang R-S, Yeh S, Zhang C, Lin H-Y et al. Differential effects of spermatogenesis and fertility in mice lacking androgen receptor in individual testis cells. Proc Natl Acad Sci U S A. 2006;12;103(50):18975-80. doi: https://doi.org/10.1073/pnas.0608565103.

  53. Kopera IA, Bilinska B, Cheng CY, Mruk DD. Sertoli-germ cell junctions in the testis: a review of recent data. Philos Trans R Soc Lond B Biol Sci. 2010; 27;365(1546):1593-605. doi: https://doi.org/10.1098/rstb.2009.0251.

  54. Huhtaniemi I. A short evolutionary history of FSH-stimulated spermatogenesis. Hormones (Athens). 2015;14(4):468–78. https://doi.org/10.14310/horm.2002.1632.

    Article  Google Scholar 

  55. Tapanainen JS, Aittomäki K, Min J, Vaskivuo T, Huhtaniemi IT. Men homozygous for an inactivating mutation of the follicle-stimulating hormone (FSH) receptor gene present variable suppression of spermatogenesis and fertility. Nat Genet. 1997;15(2):205–6. https://doi.org/10.1038/ng0297-205.

    Article  CAS  Google Scholar 

  56. Abel MH, Baker PJ, Charlton HM, Monteiro A, Verhoeven G, De Gendt K, et al. Spermatogenesis and sertoli cell activity in mice lacking Sertoli cell receptors for follicle-stimulating hormone and androgen. Endocrinology. 2008;149(7):3279–85. https://doi.org/10.1210/en.2008-0086.

    Article  CAS  Google Scholar 

  57. Almeida FF, Kristoffersen C, Taranger GL, Schulz RW. Spermatogenesis in Atlantic cod (Gadus morhua): a novel model of cystic germ cell development. Biol Reprod. 2008;78(1):27–34.

    Article  CAS  Google Scholar 

  58. Li X, Ao J, Wu J. Systematic identification and comparison of expressed profiles of lncRNAs and circRNAs with associated co-expression and ceRNA networks in mouse germline stem cells. Oncotarget. 2017;8(16):26573–90. https://doi.org/10.18632/oncotarget.15719.

    Article  Google Scholar 

  59. Li X, Tian GG, Zhao Y, Wu J. Genome-wide identification and characterization of long noncoding and circular RNAs in germline stem cells. Sci Data. 2019; 27;6(1):8. doi: https://doi.org/10.1038/s41597-019-0014-9.

  60. Cai Y, Lei X, Chen Z, Mo Z. The roles of cirRNA in the development of germ cells. Acta Histochem. 2020;122(3): 151506. https://doi.org/10.1016/j.acthis.2020.151506.

    Article  CAS  Google Scholar 

  61. Zhu F, Luo Y, Bo H, Gong G, Tang R, Fan J, et al. Trace the profile and function of circular RNAs in Sertoli cell only syndrome. Genomics. 2021;113(4):1845–54. https://doi.org/10.1016/j.ygeno.2021.04.022.

    Article  CAS  Google Scholar 

  62. Gòdia M, Castelló A, Rocco M, Cabrera B, Rodríguez-Gil JE, Balasch S et al. Identification of circular RNAs in porcine sperm and evaluation of their relation to sperm motility. Sci Rep. 2020; 14;10(1):7985. doi: https://doi.org/10.1038/s41598-020-64711-z.

  63. Liu L, Li F, Wen Z, Li T, Lv M, Zhao X, et al. Preliminary investigation of the function of hsa_circ_0049356 in nonobstructive azoospermia patients. Andrologia. 2020;52(11): e13814. https://doi.org/10.1111/and.13814.

    Article  CAS  Google Scholar 

  64. Lin X, Han M, Cheng L, Chen J, Zhang Z, Shen T, et al. Expression dynamics, relationships, and transcriptional regulations of diverse transcripts in mouse spermatogenic cells. RNA biol. 2016;13(10):1011–24. https://doi.org/10.1080/15476286.2016.1218588.

    Article  Google Scholar 

  65. Chioccarelli T, Manfrevola F, Ferraro B, Sellitto C, Cobellis G, Migliaccio M et al. Expression patterns of circular RNAs in high quality and poor quality human spermatozoa. Front Endocrinol. 2019;10(435). doi:https://doi.org/10.3389/fendo.2019.00435.

  66. Pereira R, Sá R, Barros A, Sousa M. Major regulatory mechanisms involved in sperm motility. Asian J Androl. 2017;19(1):5. https://doi.org/10.4103/1008-682X.167716.

    Article  CAS  Google Scholar 

  67. Alsheimer M, Drewes T, Schütz W, Benavente R. The cancer/testis antigen CAGE-1 is a component of the acrosome of spermatids and spermatozoa. Eur J Cell Biol. 2005;84(2–3):445–52. https://doi.org/10.1016/j.ejcb.2004.11.003.

    Article  CAS  Google Scholar 

  68. Ma J, Fan Y, Zhang J, Feng S, Hu Z, Qiu W, et al. Testosterone-dependent miR-26a-5p and let-7g-5p act as signaling mediators to regulate sperm apoptosis via targeting PTEN and PMAIP1. Int J Mol Sci. 2018;19(4):1233. https://doi.org/10.3390/ijms19041233.

    Article  CAS  Google Scholar 

  69. Marín-Briggiler CI, Jha KN, Chertihin O, Buffone MG, Herr JC, Vazquez-Levin MH, et al. Evidence of the presence of calcium/calmodulin-dependent protein kinase IV in human sperm and its involvement in motility regulation. J Cell Sci. 2005;118(9):2013–22. https://doi.org/10.1242/jcs.02326.

    Article  CAS  Google Scholar 

  70. Manfrevola F, Chioccarelli T, Cobellis G, Fasano S, Ferraro B, Sellitto C, et al. CircRNA role and circRNA-dependent network (ceRNET) in asthenozoospermia. Front Endocrinol. 2020;11:395. https://doi.org/10.3389/fendo.2020.00395.

    Article  Google Scholar 

  71. Ge P, Zhang J, Zhou L, Lv M-Q, Li Y-X, Wang J et al. CircRNA expression profile and functional analysis in testicular tissue of patients with non-obstructive azoospermia. Reprod Biol Endocrinol. 2019;17(1):100-. doi:https://doi.org/10.1186/s12958-019-0541-4.

  72. Liu T, Cheng W, Gao Y, Wang H, Liu Z. Microarray analysis of microRNA expression patterns in the semen of infertile men with semen abnormalities. Mol Med Rep. 2012;6(3):535–42. https://doi.org/10.3892/mmr.2012.967.

    Article  CAS  Google Scholar 

  73. Yao C, Yuan Q, Niu M, Fu H, Zhou F, Zhang W, et al. Distinct expression profiles and novel targets of MicroRNAs in human spermatogonia, pachytene spermatocytes, and round spermatids between OA patients and NOA patients. Mol Ther Nucleic Acids. 2017;15(9):182–94. https://doi.org/10.1016/j.omtn.2017.09.007.

    Article  CAS  Google Scholar 

  74. Lv Mq, Zhou L, Ge P, Li Yx, Zhang J, Zhou Dx. Over-expression of hsa_circ_0000116 in patients with non-obstructive azoospermia and its predictive value in testicular sperm retrieval. Andrology. 2020;8(6):1834-1843. doi: https://doi.org/10.1111/andr.12874.

  75. Bo H, Liu Z, Tang R, Gong G, Wang X, Zhang H, et al. Testicular biopsies microarray analysis reveals circRNAs are involved in the pathogenesis of non-obstructive azoospermia. Aging (Albany NY). 2020;12(3):2610. https://doi.org/10.18632/aging.102765.

    Article  CAS  Google Scholar 

  76. Muñoz X, Mata A, Bassas L, Larriba S. Altered miRNA signature of developing germ-cells in infertile patients relates to the severity of spermatogenic failure and persists in spermatozoa. Sci Rep. 2015;9(5):17991. https://doi.org/10.1038/srep17991.

    Article  CAS  Google Scholar 

  77. Abu-Halima M, Hammadeh M, Schmitt J, Leidinger P, Keller A, Meese E, et al. Altered microRNA expression profiles of human spermatozoa in patients with different spermatogenic impairments. Fertil Steril. 2013;99(5):1249-55.e16. https://doi.org/10.1016/j.fertnstert.2012.11.054.

    Article  CAS  Google Scholar 

  78. Liu Y, DeBoer K, de Kretser DM, O’Donnell L, O’Connor AE, Merriner DJ, et al. LRGUK-1 is required for basal body and manchette function during spermatogenesis and male fertility. PLoS Genet. 2015;11(3): e1005090. https://doi.org/10.1371/journal.pgen.1005090.

    Article  CAS  Google Scholar 

  79. Ferlin A, Raicu F, Gatta V, Zuccarello D, Palka G, Foresta C. Male infertility: role of genetic background. Reprod Biomed Online. 2007;14(6):734–45. https://doi.org/10.1016/s1472-6483(10)60677-3.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Mirfakhraie.

Ethics declarations

Ethics Approval

This was a review article on existing literature and did not need review by the institutional ethics committee.

Consent for Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saberiyan, M., Karimi, E., Safi, A. et al. Circular RNAs: Novel Biomarkers in Spermatogenesis Defects and Male Infertility. Reprod. Sci. 30, 62–71 (2023). https://doi.org/10.1007/s43032-022-00885-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00885-3

Keywords

Navigation