Skip to main content

Advertisement

Log in

Overexpression of miR-200b-3p in Menstrual Blood-Derived Mesenchymal Stem Cells from Endometriosis Women

  • Endometrios: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The key relationship between Sampson’s theory and the presence of mesenchymal stem cells in the menstrual flow (MenSCs), as well as the changes in post-transcriptional regulatory processes as actors in the etiopathogenesis of endometriosis, are poorly understood. No study to date has investigated the imbalance of miRNAs in MenSCs related to the disease. Thus, through literature and in silico analyses, we selected four predicted miRNAs as regulators of EGR1, SNAI1, NR4A1, NR4A2, ID1, LAMC3, and FOSB involved in pathways of apoptosis, angiogenesis, response to steroid hormones, migration, differentiation, and cell proliferation. These genes are frequently overexpressed in the endometriosis condition in our group studies. They were the trigger for the miRNAs search. Therefore, a case–control study was conducted with MenSCs of women with and without endometriosis (ten samples per group). Crossing information obtained from the STRING, PubMed, miRPathDB, miRWalk, and DIANA TOOLS databases, we chose to explore the expression of miR-21-5p, miR-100-5p, miR-143-3p, and miR-200b-3p by RT-qPCR. We found an upregulation of the miR-200b-3p in endometriosis MenSCs (P = 0.0207), with a 7.93-fold change (ratio of geometric means) compared to control. Overexpression of miR-200b has been associated with increased cell proliferation, stemness, and accentuated mesenchymal-epithelial transition process in eutopic endometrium of endometriosis. We believe that dysregulated miR-200b-3p may establish primary changes in the MenSCs, thus favoring tissue implantation at the ectopic site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data Availability

RT-qPCR raw data are available upon request from the corresponding author.

References

  1. Sourial S, Tempest N, Hapangama DK. Theories on the pathogenesis of endometriosis. Int J Reprod Med. 2014;2014:179515.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Laganà AS, Garzon S, Götte M, et al. The pathogenesis of endometriosis: molecular and cell biology insights. Int J Mol Sci. 2019;20:5615.

    Article  PubMed Central  Google Scholar 

  3. Wang Y, Nicholes K, Shih I-M. The origin and pathogenesis of endometriosis. Annu Rev Pathol. 2020;15:71–95.

    Article  CAS  PubMed  Google Scholar 

  4. Sampson JA. Peritoneal endometriosis due to the menstrual dissemination of endometrial tissue into the peritoneal cavity. Am J Obstet Gynecol. 1927;14:422–69.

    Article  Google Scholar 

  5. Nikoo S, Ebtekar M, Jeddi-Tehrani M, et al. Menstrual blood-derived stromal stem cells from women with and without endometriosis reveal different phenotypic and functional characteristics. Mol Hum Reprod. 2014;20:905–18.

    Article  CAS  PubMed  Google Scholar 

  6. Sasson IE, Taylor HS. Stem cells and the pathogenesis of endometriosis. Ann N Y Acad Sci. 2008;1127:106–15.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Cousins FL, ODF, Gargett CE. Endometrial stem/progenitor cells and their role in the pathogenesis of endometriosis. Best Pract Res: Clin Obstet Gynaecol. 2018;50:27–38.

    Article  Google Scholar 

  8. Liu Y, Zhang Z, Yang F, et al. The role of endometrial stem cells in the pathogenesis of endometriosis and their application to its early diagnosis. Biol Reprod. 2020;102:1153–9.

    Article  PubMed  Google Scholar 

  9. Poli-Neto OB, Meola J, Rosa-e-Silva JC, et al. Transcriptome meta-analysis reveals differences of immune profile between eutopic endometrium from stage I-II and III-IV endometriosis independently of hormonal milieu. Sci Rep. 2020;10:313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Poli-Neto OB, Carlos D, Favaretto A, et al. Eutopic endometrium from women with endometriosis and chlamydial endometritis share immunological cell types and DNA repair imbalance: a transcriptome meta-analytical perspective. J Reprod Immunol. 2021;145:103307.

    Article  CAS  PubMed  Google Scholar 

  11. Wren JD, Wu Y, Guo S-W. A system-wide analysis of differentially expressed genes in ectopic and eutopic endometrium. Hum Reprod. 2007;22:2093–102.

    Article  CAS  PubMed  Google Scholar 

  12. Fassbender A, Simsa P, Kyama CM, et al. TRIzol treatment of secretory phase endometrium allows combined proteomic and mRNA microarray analysis of the same sample in women with and without endometriosis. Reprod Biol Endocrinol. 2010;8:1–6.

    Article  Google Scholar 

  13. Fassbender A, Verbeeck N, Börnigen D, et al. Combined mRNA microarray and proteomic analysis of eutopic endometrium of women with and without endometriosis. Hum Reprod. 2012;27:2020–9.

    Article  CAS  PubMed  Google Scholar 

  14. Pan Q, Luo X, Toloubeydokhti T, et al. The expression profile of micro-RNA in endometrium and endometriosis and the influence of ovarian steroids on their expression. Mol Hum Reprod. 2007;13:797–806.

    Article  CAS  PubMed  Google Scholar 

  15. Ohlsson Teague EMC, Van der Hoek KH, Van der Hoek MB, et al. MicroRNA-regulated pathways associated with endometriosis. Mol Endocrinol. 2009;23:265–75.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Chegini N. Uterine microRNA signature and consequence of their dysregulation in uterine disorders. Anim Reprod. 2010;7:117–28.

    PubMed  Google Scholar 

  17. Filigheddu N, Gregnanin I, Porporato PE, et al. Differential expression of micrornas between eutopic and ectopic endometrium in ovarian endometriosis. J Biomed Biotechnol. 2010;2010:369549.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hawkins SM, Creighton CJ, Han DY, et al. Functional MicroRNA Involved in Endometriosis. Mol Endocrinol. 2011;25:821–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Santamaria X, Taylor H. MicroRNA and gynecological reproductive diseases. Fertil Steril. 2014;101:1545–51.

    Article  CAS  PubMed  Google Scholar 

  20. Braza-Boïls A, Salloum-Asfar S, Marí-Alexandre J, et al. Peritoneal fluid modifies the microRNA expression profile in endometrial and endometriotic cells from women with endometriosis. Hum Reprod. 2015;30:2292–302.

    Article  PubMed  Google Scholar 

  21. Saare M, Rekker K, Laisk-Podar T, et al. Challenges in endometriosis miRNA studies — from tissue heterogeneity to disease specific miRNAs. Biochim Biophys Acta. 2017;1863:2282–92.

    Article  CAS  Google Scholar 

  22. Agrawal S, Tapmeier TT, Rahmioglu N, et al. The miRNA mirage: how close are we to finding a non-invasive diagnostic biomarker in endometriosis? A systematic review. Int J Mol Sci. 2018;19:599.

    Article  PubMed Central  Google Scholar 

  23. Mathieu J, Ruohola-Baker H. Regulation of stem cell populations by microRNAs. Adv Exp Med Biol. 2013;786:329–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. ASRM. Revised American Society for Reproductive Medicine classification of endometriosis: 1996. Fertility and Sterility 1997; 67: 817–821.

  25. Santamaria X, Massasa EE, Taylor HS. Migration of cells from experimental endometriosis to the uterine endometrium. Endocrinology. 2012;153:5566–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cheng Y, Li L, Wang D, et al. Characteristics of human endometrium-derived mesenchymal stem cells and their tropism to endometriosis. Stem Cells Int. 2017;2017:4794827.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Meng X, Ichim TE, Zhong J, et al. Endometrial regenerative cells: a novel stem cell population. J Transl Med. 2007;5:1–10.

    Article  Google Scholar 

  28. Zucherato VS, Penariol LBC, Silva LECM, et al. Identification of suitable reference genes for mesenchymal stem cells from menstrual blood of women with endometriosis. Sci Rep. 2021;11:5422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Dominici M, Le Blanc K, Mueller I, et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy. 2006;8:315–7.

    Article  CAS  PubMed  Google Scholar 

  30. Musina RA, Belyavski AV, Tarusova OV, et al. Endometrial mesenchymal stem cells isolated from the menstrual blood. Bull Exp Biol Med. 2008;145:539–43.

    Article  CAS  PubMed  Google Scholar 

  31. Szklarczyk D, Gable AL, Lyon D, et al. STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 2019;47:D607–13.

    Article  CAS  Google Scholar 

  32. Kehl T, Kern F, Backes C, et al. miRPathDB 2.0: a novel release of the miRNA pathway dictionary database. Nucleic Acids Res. 2020;48:D142–7.

    Article  CAS  PubMed  Google Scholar 

  33. Sticht C, La Torre CD, Parveen A, et al. miRWalk: an online resource for prediction of microRNA binding sites. PLOS ONE. 2018;13:e0206239.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Karagkouni D, Paraskevopoulou MD, Chatzopoulos S, et al. DIANA-TarBase v8: a decade-long collection of experimentally supported miRNA–gene interactions. Nucleic Acids Res. 2018;46:D239–45.

    Article  CAS  PubMed  Google Scholar 

  35. Thermo Fisher Scientific. TaqMan ® Advanced miRNA assays single-tube assays for use with: TaqMan ® Advanced miRNA cDNA Synthesis Kit Catalog Number A25576. user guide 2016; 1–31.

  36. Thermo Fisher Scientific. Application note - amplification efficiency of TaqMan gene expression assays. White Paper 2006; 1–8.

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods. 2001;25:402–8.

    Article  CAS  Google Scholar 

  38. Du X, Yuan Q, Qu Y, et al. Endometrial mesenchymal stem cells isolated from menstrual blood by adherence. Stem Cells Int. 2016;2016:3573846.

    Article  PubMed  Google Scholar 

  39. Bozorgmehr M, Gurung S, Darzi S, et al. Endometrial and menstrual blood mesenchymal stem/stromal cells: biological properties and clinical application. Front Cell Dev Biol. 2020;8:497.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Chapron C, Marcellin L, Borghese B, et al. Rethinking mechanisms, diagnosis and management of endometriosis. Nat Rev Endocrinol. 2019;15:666–82.

    Article  PubMed  Google Scholar 

  41. Ramón LA, Braza-Boïls A, Gilabert-Estellés J, et al. microRNAs expression in endometriosis and their relation to angiogenic factors. Hum Reprod. 2011;26:1082–90.

    Article  PubMed  Google Scholar 

  42. Yang RQ, Teng H, Xu XH, et al. Microarray analysis of microRNA deregulation and angiogenesis-related proteins in endometriosis. Genetics and Molecular Research 2016; 15: gmr.15027826.

  43. Abdel-Rasheed M, Nour Eldeen G, Mahmoud M, et al. microRNA expression analysis in endometriotic serum treated mesenchymal stem cells. EXCLI J. 2017;16:852–67.

    PubMed  PubMed Central  Google Scholar 

  44. Haikalis ME, Wessels JM, Leyland NA, et al. MicroRNA expression pattern differs depending on endometriosis lesion type. Biol Reprod. 2018;98:623–33.

    Article  PubMed  Google Scholar 

  45. Abe W, Nasu K, Nakada C, et al. miR-196b targets c-myc and Bcl-2 expression, inhibits proliferation and induces apoptosis in endometriotic stromal cells. Hum Reprod. 2013;28:750–61.

    Article  CAS  PubMed  Google Scholar 

  46. Wright KR, Mitchell B, Santanam N. Redox regulation of microRNAs in endometriosis-associated pain. Redox Biol. 2017;12:956–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Zheng B, Xue X, Zhao Y, et al. The differential expression of microRNA-143,145 in endometriosis. Iran J Reprod Med. 2014;12:555–60.

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Braza-Boïls A, Marí-Alexandre J, Gilabert J, et al. MicroRNA expression profile in endometriosis: its relation to angiogenesis and fibrinolytic factors. Hum Reprod. 2014;29:978–88.

    Article  PubMed  Google Scholar 

  49. Saare M, Rekker K, Laisk-Podar T, et al. High-throughput sequencing approach uncovers the miRNome of peritoneal endometriotic lesions and adjacent healthy tissues. PLOS ONE. 2014;9:e112630.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shi X-Y, Gu L, Chen J, et al. Downregulation of miR-183 inhibits apoptosis and enhances the invasive potential of endometrial stromal cells in endometriosis. Int J Mol Med. 2014;33:59–67.

    Article  CAS  PubMed  Google Scholar 

  51. Logan PC, Yango P, Tran ND. Endometrial stromal and epithelial cells exhibit unique aberrant molecular defects in patients with endometriosis. Reprod Sci. 2017;25:140–59.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Mashayekhi P, Noruzinia M, Zeinali S, et al. Endometriotic mesenchymal stem cells epigenetic pathogenesis: deregulation of miR-200b, miR-145, and let7b in a functional imbalanced epigenetic disease. Cell J. 2019;21:179–85.

    PubMed  PubMed Central  Google Scholar 

  53. Warren LA, Shih A, Renteira SM, et al. Analysis of menstrual effluent: diagnostic potential for endometriosis. Mol Med. 2018;24:1–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Chen L, Qu J, Xiang C. The multi-functional roles of menstrual blood-derived stem cells in regenerative medicine. Stem Cell Res Ther. 2019;10:1–10.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Panir K, Schjenken JE, Robertson SA, et al. Non-coding RNAs in endometriosis: a narrative review. Hum Reprod Update. 2018;24:497–515.

    Article  CAS  PubMed  Google Scholar 

  56. Altuvia Y, Landgraf P, Lithwick G, et al. Clustering and conservation patterns of human microRNAs. Nucleic Acids Res. 2005;33:2697–706.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Hu W, Xie Q, Xu Y, et al. Integrated bioinformatics analysis reveals function and regulatory network of miR-200b-3p in endometriosis. Biomed Res Int. 2020;2020:3962953.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Humphries B, Yang C. The microRNA-200 family: small molecules with novel roles in cancer development, progression and therapy. Oncotarget. 2015;6:6472–98.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Jolly MK, Ware KE, Gilja S, et al. EMT and MET: necessary or permissive for metastasis? Mol Oncol. 2017;11:755–69.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Yang Y-M, Yang W-X. Epithelial-to-mesenchymal transition in the development of endometriosis. Oncotarget. 2017;8:41679–89.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Eggers JC, Martino V, Reinbold R, et al. microRNA miR-200b affects proliferation, invasiveness and stemness of endometriotic cells by targeting ZEB1, ZEB2 and KLF4. Reprod Biomed Online. 2016;32:434–45.

    Article  CAS  PubMed  Google Scholar 

  62. Dongre A, Weinberg RA. New insights into the mechanisms of epithelial–mesenchymal transition and implications for cancer. Nat Rev Mol Cell Biol. 2019;20:69–84.

    Article  CAS  PubMed  Google Scholar 

  63. Wellner U, Schubert J, Burk UC, et al. The EMT-activator ZEB1 promotes tumorigenicity by repressing stemness-inhibiting microRNAs. Nat Cell Biol. 2009;11:1487–95.

    Article  CAS  PubMed  Google Scholar 

  64. Park S-M, Gaur AB, Lengyel E, et al. The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes Dev. 2008;22:894–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Ohlsson Teague EMC, Print CG, Hull ML. The role of microRNAs in endometriosis and associated reproductive conditions. Hum Reprod Update. 2010;16:142–65.

    Article  CAS  Google Scholar 

  66. Barragan F, Irwin JC, Balayan S, et al. Human endometrial fibroblasts derived from mesenchymal progenitors inherit progesterone resistance and acquire an inflammatory phenotype in the endometrial niche in endometriosis. Biol Reprod. 2016;94:118.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank Océlia de Vasconcelos for her support in collecting the samples. In addition, we are especially grateful to the women who voluntarily agreed to participate in this work.

Funding

This study was financially supported by the Sao Paulo Research Foundation (FAPESP 2013/22431–3), National Institute of Hormones and Women’s Health (Hormona)-CNPq (INCT-CNPq 465482/2014–7), and CAPES Higher Education Improvement Coordination (Scholarship).

Author information

Authors and Affiliations

Authors

Contributions

RZO applied the experiments, analyzed and interpreted the data, and drafted the article. FOB, ACLC, and LBCP performed a literature review, in silico analysis, and interpreted the data. The CCP assisted in the RT-qPCR experiments and the preparation of the laboratory experiments. PAT and MDO helped in cell culture, immunophenotyping, and cell differentiation. OBPN, JCRS, and RAF helped design the study, select the samples, and review the manuscript. JM designed and coordinated the study, supervised the experiments, and edited the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juliana Meola.

Ethics declarations

Ethics Approval

The Research Ethics Committee of the University Hospital of the Ribeirao Preto Medical School approved this case–control study (HCRP 3644/2019). The MenSC used in this work were collected from November 2014 to December 2016 following the ethics guidelines established by the Declaration of Helsinki (HCRP 15227/2012). They have been transferred to a biorepository of the Human Reproduction Section at the Department of Gynecology and Obstetrics of the Ribeirao Preto Medical School (HCRP 3644/2019).

Consent to Participate

All participants have provided written informed consent (HCRP. 3644/2019, approval date 06/04/2019).

Consent for Publication

All authors have read and approved the manuscript publication.

Conflict of Interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (JPG 3010 KB)

Supplementary file2 (JPG 2865 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, R.Z., de Oliveira Buono, F., Cressoni, A.C.L. et al. Overexpression of miR-200b-3p in Menstrual Blood-Derived Mesenchymal Stem Cells from Endometriosis Women. Reprod. Sci. 29, 734–742 (2022). https://doi.org/10.1007/s43032-022-00860-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00860-y

Keywords

Navigation