Skip to main content
Log in

Antenatal Steroids and Cord Blood T-cell Glucocorticoid Receptor DNA Methylation and Exon 1 Splicing

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Antenatal administration of glucocorticoids such as betamethasone (BMZ) during the late preterm period improves neonatal respiratory outcomes. However, glucocorticoids may elicit programming effects on immune function and gene regulation. Here, we test the hypothesis that exposure to antenatal BMZ alters cord blood immune cell composition in association with altered DNA methylation and alternatively expressed Exon 1 transcripts of the glucocorticoid receptor (GR) gene in cord blood CD4+ T-cells. Cord blood was collected from 51 subjects in the Antenatal Late Preterm Steroids Trial: 27 BMZ, 24 placebo. Proportions of leukocytes were compared between BMZ and placebo. In CD4+ T-cells, methylation at CpG sites in the GR promoter regions and expression of GR mRNA exon 1 variants were compared between BMZ and placebo. BMZ was associated with an increase in granulocytes (51.6% vs. 44.7% p = 0.03) and a decrease in lymphocytes (36.8% vs. 43.0% p = 0.04) as a percent of the leukocyte population vs. placebo. Neither GR methylation nor exon 1 transcript levels differed between groups. BMZ is associated with altered cord blood leukocyte proportions, although no associated alterations in GR methylation were observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Availability of data and material

Not applicable

Code availability

Not applicable

References

  1. Liggins GC, Howie RN. A controlled trial of antepartum glucocorticoid treatment for prevention of the respiratory distress syndrome in premature infants. Pediatrics. 1972;50(4):515–25.

    Article  CAS  PubMed  Google Scholar 

  2. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consensus Development Panel on the Effect of Corticosteroids for Fetal Maturation on Perinatal Outcomes. JAMA. 1995;273(5):413-8. https://doi.org/10.1001/jama.995.03520290065031.

  3. Effect of corticosteroids for fetal maturation on perinatal outcomes. NIH Consens Statement. 1994;12(2):1-24.

  4. Asztalos E, Willan A, Murphy K, Matthews S, Ohlsson A, Saigal S, et al. Association between gestational age at birth, antenatal corticosteroids, and outcomes at 5 years: multiple courses of antenatal corticosteroids for preterm birth study at 5 years of age (MACS-5). BMC Pregnancy Childbirth. 2014;14:272. https://doi.org/10.1186/471-2393-14-272.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Asztalos EV, Murphy KE, Willan AR, Matthews SG, Ohlsson A, Saigal S, et al. Multiple courses of antenatal corticosteroids for preterm birth study: outcomes in children at 5 years of age (MACS-5). JAMA Pediatr. 2013;167(12):1102–10. https://doi.org/10.1001/jamapediatrics.2013.2764.

    Article  PubMed  Google Scholar 

  6. Murphy KE, Hannah ME, Willan AR, Hewson SA, Ohlsson A, Kelly EN, et al. Multiple courses of antenatal corticosteroids for preterm birth (MACS): a randomised controlled trial. Lancet. 2008;372(9656):2143–51. https://doi.org/10.1016/S0140-6736(08)61929-7.

    Article  CAS  PubMed  Google Scholar 

  7. Sloboda DM, Moss TJ, Gurrin LC, Newnham JP, Challis JR. The effect of prenatal betamethasone administration on postnatal ovine hypothalamic-pituitary-adrenal function. J Endocrinol. 2002;172(1):71–81. https://doi.org/10.1677/joe.0.1720071

    Article  CAS  PubMed  Google Scholar 

  8. Muneoka K, Mikuni M, Ogawa T, Kitera K, Kamei K, Takigawa M, et al. Prenatal dexamethasone exposure alters brain monoamine metabolism and adrenocortical response in rat offspring. Am J Physiol. 1997;273(5):R1669-75 https://doi.org/10.1152/ajpregu.1997.273.5.R1669

    Article  CAS  PubMed  Google Scholar 

  9. Garite TJ, Kurtzman J, Maurel K, Clark R. Impact of a ‘rescue course’ of antenatal corticosteroids: a multicenter randomized placebo-controlled trial. Am J Obstet Gynecol. 2009;200(3):248.e1-9. https://doi.org/10.1016/j.ajog.2009.01.021

    Article  CAS  Google Scholar 

  10. McEvoy C, Schilling D, Peters D, Tillotson C, Spitale P, Wallen L, et al. Respiratory compliance in preterm infants after a single rescue course of antenatal steroids: a randomized controlled trial. Am J Obstet Gynecol. 2010;202(6):544.e1-9. https://doi.org/10.1016/j.ajog.2010.01.038 (Epub Mar 15).

    Article  Google Scholar 

  11. Gyamfi-Bannerman C, Thom EA, Blackwell SC, Tita AT, Reddy UM, Saade GR, et al. Antenatal betamethasone for women at risk for late preterm delivery. N Engl J Med. 2016;374(14):1311–20. https://doi.org/10.1056/NEJMoa1516783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Implementation of the use of antenatal corticosteroids in the late preterm birth period in women at risk for preterm delivery. Am J Obstet Gynecol. 2016;215(2):B13-5. 0.1016/j.ajog.2016.03.013. Epub Mar 15.

  13. Crowther CA, McKinlay CJ, Middleton P, Harding JE. Repeat doses of prenatal corticosteroids for women at risk of preterm birth for improving neonatal health outcomes. Cochrane Database Syst Rev. 2015;7:CD003935. https://doi.org/10.1002/14651858.CD003935.pub4.

    Article  Google Scholar 

  14. Palma-Gudiel H, Cordova-Palomera A, Leza JC, Fananas L. Glucocorticoid receptor gene (NR3C1) methylation processes as mediators of early adversity in stress-related disorders causality: a critical review. Neurosci Biobehav Rev. 2015;55(520):35. https://doi.org/10.1016/j.neubiorev.2015.05.016.

    Article  CAS  Google Scholar 

  15. van der Knaap LJ, Riese H, Hudziak JJ, Verbiest MM, Verhulst FC, Oldehinkel AJ, et al. Glucocorticoid receptor gene (NR3C1) methylation following stressful events between birth and adolescence. The TRAILS study Transl Psychiatry. 2014;4:e381. https://doi.org/10.1038/tp.2014.22.

    Article  CAS  PubMed  Google Scholar 

  16. Vandevyver S, Dejager L, Libert C. Comprehensive overview of the structure and regulation of the glucocorticoid receptor. Endocr Rev. 2014;35(4):671–93. https://doi.org/10.1210/er.9014-1010 (Epub 2014 Jun 17).

    Article  CAS  PubMed  Google Scholar 

  17. Turner JD, Schote AB, Macedo JA, Pelascini LP, Muller CP. Tissue specific glucocorticoid receptor expression, a role for alternative first exon usage? Biochem Pharmacol. 2006;72(11):1529–37. https://doi.org/10.1016/j.bcp.2006.07.005.

    Article  CAS  PubMed  Google Scholar 

  18. Mata-Greenwood E, Jackson PN, Pearce WJ, Zhang L. Endothelial glucocorticoid receptor promoter methylation according to dexamethasone sensitivity. J Mol Endocrinol. 2015;55(2):133–46. https://doi.org/10.1530/JME-15-0124 (Epub 2015 Aug 4).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hogg K, Blair JD, McFadden DE, von Dadelszen P, Robinson WP. Early onset pre-eclampsia is associated with altered DNA methylation of cortisol-signalling and steroidogenic genes in the placenta. PLoS One. 2013;8(5):e62969. https://doi.org/10.1371/journal.pone.0062969Print2013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ashwell JD, Lu FW, Vacchio MS. Glucocorticoids in T cell development and function. Annu Rev Immunol. 2000;18(309):45. https://doi.org/10.1146/annurev.immunol.18.1.309.

    Article  Google Scholar 

  21. Franco LM, Gadkari M, Howe KN, Sun J, Kardava L, Kumar P, et al. Immune regulation by glucocorticoids can be linked to cell type-dependent transcriptional responses. J Exp Med. 2019;216(2):384–406. https://doi.org/10.1084/jem.20180595 (Epub 2019 Jan 23).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Barnes PJ. Anti-inflammatory actions of glucocorticoids: molecular mechanisms. Clin Sci (Lond). 1998;94(6):557–72. https://doi.org/10.1042/cs0940557.

    Article  CAS  PubMed  Google Scholar 

  23. Walker JC, Smolders MA, Gemen EF, Antonius TA, Leuvenink J, de Vries E. Development of lymphocyte subpopulations in preterm infants. Scand J Immunol. 2011;73(1):53–8. https://doi.org/10.1111/j.365-3083.2010.02473.x.

    Article  CAS  PubMed  Google Scholar 

  24. Hompes T, Izzi B, Gellens E, Morreels M, Fieuws S, Pexsters A, et al. Investigating the influence of maternal cortisol and emotional state during pregnancy on the DNA methylation status of the glucocorticoid receptor gene (NR3C1) promoter region in cord blood. J Psychiatr Res. 2013;47(7):880–91. https://doi.org/10.1016/j.jpsychires.2013.03.009 (Epub Apr 6).

    Article  PubMed  Google Scholar 

  25. Labonte B, Azoulay N, Yerko V, Turecki G, Brunet A. Epigenetic modulation of glucocorticoid receptors in posttraumatic stress disorder. Transl Psychiatry. 2014;4:e368. https://doi.org/10.1038/tp.2014.3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pedersen KB, Geng CD, Vedeckis WV. Three mechanisms are involved in glucocorticoid receptor autoregulation in a human T-lymphoblast cell line. Biochemistry. 2004;43(34):10851–8. https://doi.org/10.1021/bi049458u.

    Article  CAS  PubMed  Google Scholar 

  27. Joss-Moore LA, Wang Y, Ogata EM, Sainz AJ, Yu X, Callaway CW, et al. IUGR differentially alters MeCP2 expression and H3K9Me3 of the PPARgamma gene in male and female rat lungs during alveolarization. Birth Defects Res A Clin Mol Teratol. 2011;91(8):672–81. https://doi.org/10.1002/bdra.20783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  29. Oberlander TF, Weinberg J, Papsdorf M, Grunau R, Misri S, Devlin AM. Prenatal exposure to maternal depression, neonatal methylation of human glucocorticoid receptor gene (NR3C1) and infant cortisol stress responses. Epigenetics. 2008;3(2):97–106. https://doi.org/10.4161/epi.3.2.6034.

    Article  PubMed  Google Scholar 

  30. Kadanali S, Ingec M, Kucukozkan T, Borekci B, Kumtepe Y. Changes in leukocyte, granulocyte and lymphocyte counts following antenatal betamethasone administration to pregnant women. Int J Gynaecol Obstet. 1997;58(3):269–74. https://doi.org/10.1016/s0020-7292(97)00085-4.

    Article  CAS  PubMed  Google Scholar 

  31. Barak M, Cohen A, Herschkowitz S. Total leukocyte and neutrophil count changes associated with antenatal betamethasone administration in premature infants. Acta Paediatr. 1992;81(10):760–3. https://doi.org/10.1111/j.651-2227.1992.tb12098.x.

    Article  CAS  PubMed  Google Scholar 

  32. Chabra S, Cottrill C, Rayens MK, Cross R, Lipke D, Bruce M. Lymphocyte subsets in cord blood of preterm infants: effect of antenatal steroids. Biol Neonate. 1998;74(3):200–7. https://doi.org/10.1159/000014025.

    Article  CAS  PubMed  Google Scholar 

  33. Kavelaars A, van der Pompe G, Bakker JM, van Hasselt PM, Cats B, Visser GH, et al. Altered immune function in human newborns after prenatal administration of betamethasone: enhanced natural killer cell activity and decreased T cell proliferation in cord blood. Pediatr Res. 1999;45(3):306–12. https://doi.org/10.1203/00006450-199903000-00003.

    Article  CAS  PubMed  Google Scholar 

  34. Deaton AM, Webb S, Kerr AR, Illingworth RS, Guy J, Andrews R, et al. Cell type-specific DNA methylation at intragenic CpG islands in the immune system. Genome Res. 2011;21(7):1074–86. https://doi.org/10.1101/gr.118703.110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miao F, Smith DD, Zhang L, Min A, Feng W, Natarajan R. Lymphocytes from patients with type 1 diabetes display a distinct profile of chromatin histone H3 lysine 9 dimethylation: an epigenetic study in diabetes. Diabetes. 2008;57(12):3189–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ferguson AC. Prolonged impairment of cellular immunity in children with intrauterine growth retardation. J Pediatr. 1978;93(1):52–6. https://doi.org/10.1016/s0022-3476(78)80599-x.

    Article  CAS  PubMed  Google Scholar 

  37. Kajantie E. Fetal origins of stress-related adult disease. Ann N Y Acad Sci. 2006;1083(11):27. https://doi.org/10.1196/annals.367.026.

    Article  Google Scholar 

  38. Strunk T, Currie A, Richmond P, Simmer K, Burgner D. Innate immunity in human newborn infants: prematurity means more than immaturity. J Matern Fetal Neonatal Med. 2011;24(1):25–31. https://doi.org/10.3109/14767058.2010.482605 (Epub 2010 Jun 23).

    Article  PubMed  Google Scholar 

  39. Turner JD, Pelascini LP, Macedo JA, Muller CP. Highly individual methylation patterns of alternative glucocorticoid receptor promoters suggest individualized epigenetic regulatory mechanisms. Nucleic Acids Res. 2008;36(22):7207–18. https://doi.org/10.1093/nar/gkn897 (Epub 2008 Nov 12).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonte B, Szyf M, et al. Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci. 2009;12(3):342–8. https://doi.org/10.1038/nn.2270.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Tyrka AR, Parade SH, Eslinger NM, Marsit CJ, Lesseur C, Armstrong DA, et al. Methylation of exons 1D, 1F, and 1H of the glucocorticoid receptor gene promoter and exposure to adversity in preschool-aged children. Dev Psychopathol. 2015;27(2):577–85. https://doi.org/10.1017/S0954579415000176.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Farrell C, Doolin K, OL N, Jairaj C, Roddy D, Tozzi L, et al. DNA methylation differences at the glucocorticoid receptor gene in depression are related to functional alterations in hypothalamic-pituitary-adrenal axis activity and to early life emotional abuse. Psychiatry Res. 2018;265(341):348. https://doi.org/10.1016/j.psychres.2018.04.064.

    Article  CAS  Google Scholar 

  43. Palma-Gudiel H, Cordova-Palomera A, Eixarch E, Deuschle M, Fananas L. Maternal psychosocial stress during pregnancy alters the epigenetic signature of the glucocorticoid receptor gene promoter in their offspring: a meta-analysis. Epigenetics. 2015;10(10):893–902. https://doi.org/10.1080/15592294.2015.1088630.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Nagarajan S, Seddighzadeh B, Baccarelli A, Wise LA, Williams M, Shields AE. Adverse maternal exposures, methylation of glucocorticoid-related genes and perinatal outcomes: a systematic review. Epigenomics. 2016;8(7):925–44. https://doi.org/10.2217/epi.16.9 (Epub 016 Jul 6).

    Article  CAS  PubMed  Google Scholar 

  45. de Groot J, Kranendonk G, Fillerup M, Hopster H, Boersma W, Hodgson D, et al. Response to LPS in female offspring from sows treated with cortisol during pregnancy. Physiol Behav. 2007;90(4):612–8. https://doi.org/10.1016/j.physbeh.2006.11.013 (Epub 7 Jan 29).

    Article  CAS  PubMed  Google Scholar 

  46. Reyes TM, Coe CL. Prenatal manipulations reduce the proinflammatory response to a cytokine challenge in juvenile monkeys. Brain Res. 1997;769(1):29–35. https://doi.org/10.1016/s0006-8993(97)00687-2.

    Article  CAS  PubMed  Google Scholar 

  47. McGoldrick E, Stewart F, Parker R, Dalziel SR. Antenatal corticosteroids for accelerating fetal lung maturation for women at risk of preterm birth. Cochrane Database Syst Rev. 2020;12(12):CD004454. https://doi.org/10.1002/14651858.CD004454.pub4.

    Article  PubMed  Google Scholar 

  48. Vermillion ST, Soper DE, Newman RB. Neonatal sepsis and death after multiple courses of antenatal betamethasone therapy. Am J Obstet Gynecol. 2000;183(4):810–4. https://doi.org/10.1067/mob.2000.108838.

    Article  CAS  PubMed  Google Scholar 

  49. Committee Opinion No. 713: antenatal corticosteroid therapy for fetal maturation. Obstet Gynecol. 2017;130(2):e102–9. https://doi.org/10.1097/AOG.0000000000002237.

    Article  CAS  Google Scholar 

  50. Braithwaite EC, Kundakovic M, Ramchandani PG, Murphy SE, Champagne FA. Maternal prenatal depressive symptoms predict infant NR3C1 1F and BDNF IV DNA methylation. Epigenetics. 2015;10(5):408–17. https://doi.org/10.1080/15592294.2015.1039221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the following for their contributions to the original trial: Felecia Ortiz, RN, BSN and Sabine Bousleiman, RNC, MSN, MPH for protocol development and coordination between clinical research centers and Ronald Wapner, MD, Elizabeth A. Thom, PhD, Carol Blaisdell, MD, Catherine Spong, MD, and Uma M. Reddy, MD, MPH for protocol development and oversight.

In addition to the authors, other members of the Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network contributing centers are as follows:

University of Utah Health Sciences Center, Salt Lake City, UT — K. Hill, A. Sowles, S. Timothy, P. Reed (deceased; Intermountain Healthcare), M. Varner

Columbia University, New York, NY — S. Bousleiman, R. Wapner, M. DiVito, M. Talucci, L. Plante (Drexel University), C. Tocci (Drexel University), M. Hoffman (Christiana Care Health Systems), S. Lynch (Christiana Care Health Systems), A. Ranzini (St. Peter’s University Hospital), M. Lake (St. Peter’s University Hospital), J. Smulian (Lehigh Valley Health Network), D. Skupski (New York Hospital Queens)

The George Washington University Biostatistics Center, Washington, D.C. — E. Thom, V. Momirova, G. Heinrich, T. Spangler

National Heart, Lung, and Blood Institute, Bethesda, MD — C. Blaisdell

Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD — C. Spong, U. Reddy, S. Tolivaisa

Funding

This study was supported by grants (HL098554 and HL098354) from the NHLBI, by grants (HD34208, HD40485, and HD36801) from the NICHD, and by a grant (UL1 TR000040) from the National Center for Advancing Translational Sciences, National Institutes of Health. This study was also supported in part through the University of Utah Flow Cytometry Facility and National Cancer Institute (5P30CA042014-24) and the Divisions of Maternal Fetal Medicine and Neonatology at the University of Utah. The comments and views expressed in this article are those of the authors and do not necessarily represent the views of the National Institutes of Health. National Heart,Lung,and Blood Institute,HL098554,Cynthia Gyamfi-Bannerman ,HL098354,Kathleen A Jablonski ,Eunice Kennedy Shriver National Institute of Child Health and Human Development,HD34208,HD40485,HD36801

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Lisa A. Joss-Moore.

Ethics declarations

Ethics approval

Cord blood was collected under IRB approved protocol IRB_00056274 at the University of Utah and Columbia University in accordance with local and federal Protection of Human Subjects law 45 CFR 46 and the Health Insurance Portability and Accountability Act (HIPAA).

Consent to participate

All maternal donors consented to participate and gave HIPPA authorization for data collection and use in research.

Consent for publication

Not applicable

Conflict of interest

The authors declare no competing interests.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 16 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carpenter, J.R., Jablonski, K.A., Koncinsky, J. et al. Antenatal Steroids and Cord Blood T-cell Glucocorticoid Receptor DNA Methylation and Exon 1 Splicing. Reprod. Sci. 29, 1513–1523 (2022). https://doi.org/10.1007/s43032-022-00859-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00859-5

Keywords

Navigation