Skip to main content

Advertisement

Log in

Altered Molecular Pathways and Biomarkers of Endometrial Receptivity in Infertile Women with Polycystic Ovary Syndrome

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Anovulation is the most prominent cause of infertility in polycystic ovary syndrome (PCOS) patients. Although ovulation can be corrected pharmacologically, the number of pregnancies remains low. Even if excellent embryos are transferred by IVF, it does not change the high miscarriage rate of PCOS patients. These facts collectively indicate that there is a disorder of endometrial development and receptivity to the embryo in PCOS patients, including the decrease of receptive ability, inhibition of embryo adhesion, undersupply of energy, poor blood perfusion, and pro-inflammatory status in the endometrium. However, it has never received the same attention as ovulatory dysfunction. Here we list some alternations of endometrial receptivity in women with PCOS, discuss the underlying intricate mechanisms, and try to find out the possible therapeutic targets, which may bring new perspectives to those who are able to provide high-quality embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu T, Cui J, Goodarzi MO. Polycystic ovary syndrome and risk of type 2 diabetes, coronary heart disease, and stroke. Diabetes. 2021;70:627–37. https://doi.org/10.2337/db20-0800.

    Article  CAS  Google Scholar 

  2. Stener-Victorin E, Deng Q. Epigenetic inheritance of polycystic ovary syndrome - challenges and opportunities for treatment. Nat Rev Endocrinol. 2021;17:521–33. https://doi.org/10.1038/s41574-021-00517-x.

    Article  Google Scholar 

  3. Lizneva D, Suturina L, Walker W, Brakta S, Gavrilova-Jordan L, Azziz R. Criteria, prevalence, and phenotypes of polycystic ovary syndrome. Fertil Steril. 2016;106:6–15. https://doi.org/10.1016/j.fertnstert.2016.05.003.

    Article  Google Scholar 

  4. Risal S, Pei Y, Lu H, Manti M, Fornes R, Pui HP, et al. Prenatal androgen exposure and transgenerational susceptibility to polycystic ovary syndrome. Nat Med. 2019;25:1894–904. https://doi.org/10.1038/s41591-019-0666-1.

    Article  CAS  Google Scholar 

  5. Mimouni N, Paiva I, Barbotin AL, Timzoura FE, Plassard D, Le Gras S, et al. Polycystic ovary syndrome is transmitted via a transgenerational epigenetic process. Cell Metab. 2021;33:513–30.e8. https://doi.org/10.1016/j.cmet.2021.01.004.

    Article  CAS  Google Scholar 

  6. Tata B, Mimouni N, Barbotin AL, Malone SA, Loyens A, Pigny P, et al. Elevated prenatal anti-Müllerian hormone reprograms the fetus and induces polycystic ovary syndrome in adulthood. Nat Med. 2018;24:834–46. https://doi.org/10.1038/s41591-018-0035-5.

    Article  CAS  Google Scholar 

  7. Oróstica L, Rosas C, Plaza-Parrochia F, Astorga I, Gabler F, García V, et al. Altered steroid metabolism and insulin signaling in PCOS endometria: impact in tissue function. Curr Pharm Des. 2016;22:5614–24. https://doi.org/10.2174/1381612822666160810111528.

    Article  CAS  Google Scholar 

  8. Steiner N, Ates S, Shaulov T, et al. A comparison of IVF outcomes transferring a single ideal blastocyst in women with polycystic ovary syndrome and normal ovulatory controls. Arch Gynecol Obstet. 2020;302(6):1479–86.

    Article  CAS  Google Scholar 

  9. Tang K, Wu L, Luo Y, Gong B. In vitro fertilization outcomes in women with polycystic ovary syndrome: a meta-analysis. Eur J Obstet Gynecol Reprod Biol. 2021;259:146–52. https://doi.org/10.1016/j.ejogrb.2021.02.023.

    Article  Google Scholar 

  10. Sha T, Wang X, Cheng W, Yan Y. A meta-analysis of pregnancy-related outcomes and complications in women with polycystic ovary syndrome undergoing IVF. Reprod BioMed Online. 2019;39(2):281–93.

    Article  Google Scholar 

  11. Bu Z, Hu L, Su Y, Guo Y, Zhai J, Sun YP. Factors related to early spontaneous miscarriage during IVF/ICSI treatment: an analysis of 21,485 clinical pregnancies. Reprod BioMed Online. 2020;40(2):201–6.

    Article  Google Scholar 

  12. Da Broi MG, Meola J, Plaça JR, Peronni KC, Rocha CV, Silva WA, et al. Is the profile of transcripts altered in the eutopic endometrium of infertile women with endometriosis during the implantation window. Hum Reprod. 2019;34:2381–90. https://doi.org/10.1093/humrep/dez225.

    Article  CAS  Google Scholar 

  13. Amjadi F, Zandieh Z, Mehdizadeh M, Aghajanpour S, Raoufi E, Aghamajidi A, et al. The uterine immunological changes may be responsible for repeated implantation failure. J Reprod Immunol. 2020;138:103080. https://doi.org/10.1016/j.jri.2020.103080.

    Article  CAS  Google Scholar 

  14. Lédée N, Munaut C, Aubert J, Sérazin V, Rahmati M, Chaouat G, et al. Specific and extensive endometrial deregulation is present before conception in IVF/ICSI repeated implantation failures (IF) or recurrent miscarriages. J Pathol. 2011;225:554–64. https://doi.org/10.1002/path.2948.

    Article  Google Scholar 

  15. Lopes IM, Baracat MC, Simões Mde J, Simões RS, Baracat EC, Soares JM Jr. Endometrium in women with polycystic ovary syndrome during the window of implantation. Rev Assoc Med Bras (1992). 2011;57(6):702–9.

    Google Scholar 

  16. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18:1754–67. https://doi.org/10.1038/nm.3012.

    Article  CAS  Google Scholar 

  17. Hoozemans DA, Schats R, Lambalk CB, Homburg R, Hompes PG. Human embryo implantation: current knowledge and clinical implications in assisted reproductive technology. Reprod BioMed Online. 2004;9:692–715. https://doi.org/10.1016/s1472-6483(10)61781-6.

    Article  Google Scholar 

  18. Du H, Taylor HS. The role of hox genes in female reproductive tract development, adult function, and fertility. Cold Spring Harb Perspect Med. 2015;6:a023002. https://doi.org/10.1101/cshperspect.a023002.

    Article  CAS  Google Scholar 

  19. Zhu M, Yi S, Huang X, Meng J, Sun H, Zhou J. Human chorionic gonadotropin improves endometrial receptivity by increasing the expression of homeobox A10. Mol Hum Reprod. 2020;26(6):413–24.

    Article  CAS  Google Scholar 

  20. Xu Y, Lu J, Wu J, Jiang R, Guo C, Tang Y, et al. HOXA10 co-factor MEIS1 is required for the decidualization in human endometrial stromal cell. J Mol Endocrinol. 2020;64:249–58. https://doi.org/10.1530/JME-19-0100.

    Article  CAS  Google Scholar 

  21. Sahar N, Mujihartini N, Pudjianto DA, Pradhita AD, Thuffi R, Kusmardi K. Increased progesterone on the day of administration of hCG in controlled ovarian hyperstimulation affects the expression of HOXA10 in primates' endometrial receptivity. Biomedicines. 2019:7. https://doi.org/10.3390/biomedicines7040083.

  22. Taylor HS, Arici A, Olive D, Igarashi P. HOXA10 is expressed in response to sex steroids at the time of implantation in the human endometrium. J Clin Invest. 1998;101:1379–84. https://doi.org/10.1172/JCI1057.

    Article  CAS  Google Scholar 

  23. Guo F, Si C, Zhou M, Wang J, Zhang D, Leung P, et al. Decreased PECAM1-mediated TGF-β1 expression in the mid-secretory endometrium in women with recurrent implantation failure. Hum Reprod. 2018;33:832–43. https://doi.org/10.1093/humrep/dey022.

    Article  CAS  Google Scholar 

  24. Taylor HS, Bagot C, Kardana A, Olive D, Arici A. HOX gene expression is altered in the endometrium of women with endometriosis. Hum Reprod. 1999;14:1328–31. https://doi.org/10.1093/humrep/14.5.1328.

    Article  CAS  Google Scholar 

  25. Cermik D, Selam B, Taylor HS. Regulation of HOXA-10 expression by testosterone in vitro and in the endometrium of patients with polycystic ovary syndrome. J Clin Endocrinol Metab. 2003;88:238–43. https://doi.org/10.1210/jc.2002-021072.

    Article  CAS  Google Scholar 

  26. Kara M, Ozcan SS, Aran T, Kara O, Yilmaz N. Evaluation of endometrial receptivity by measuring HOXA-10, HOXA-11, and leukemia inhibitory factor expression in patients with polycystic ovary syndrome. Gynecol Minim Invasive Ther. 2019;8:118–22. https://doi.org/10.4103/GMIT.GMIT_112_18.

    Article  Google Scholar 

  27. Senturk S, Celik O, Dalkilic S, Hatirnaz S, Celik N, Unlu C, et al. Laparoscopic ovarian drilling improves endometrial homeobox gene expression in PCOS. Reprod Sci. 2020;27:675–80. https://doi.org/10.1007/s43032-019-00072-x.

    Article  Google Scholar 

  28. He H, Li T, Yin D, Liu R, Chen Q, Wang J, et al. HOXA10 expression is decreased by testosterone in luteinized granulosa cells in vitro. Mol Med Rep. 2012;6:51–6. https://doi.org/10.3892/mmr.2012.875.

    Article  CAS  Google Scholar 

  29. Baracat MC, Serafini PC, Simões Rdos S, Maciel GA, Soares JM Jr, Baracat EC. Systematic review of cell adhesion molecules and estrogen receptor expression in the endometrium of patients with polycystic ovary syndrome. Int J Gynaecol Obstet. 2015;129(1):1–4.

    Article  CAS  Google Scholar 

  30. Patel B, Elguero S, Thakore S, Dahoud W, Bedaiwy M, Mesiano S. Role of nuclear progesterone receptor isoforms in uterine pathophysiology. Hum Reprod Update. 2015;21:155–73. https://doi.org/10.1093/humupd/dmu056.

    Article  CAS  Google Scholar 

  31. Hsieh YY, Chang CC, Tsai HD, Lin CS. Leukemia inhibitory factor in follicular fluid is not related to the number and quality of embryos as well as implantation and pregnancy rates. Biochem Genet. 2005;43:501–6. https://doi.org/10.1007/s10528-005-8166-z.

    Article  CAS  Google Scholar 

  32. Ozörnek MH, Bielfeld P, Krüssel JS, Hirchenhain J, Jeyendran RS, Koldovsky U. Epidermal growth factor and leukemia inhibitory factor levels in follicular fluid. Association with in vitro fertilization outcome. J Reprod Med. 1999;44:367–9.

    Google Scholar 

  33. Li Z, Zhu Y, Li H, Jiang W, Liu H, Yan J, et al. Leukaemia inhibitory factor in serum and follicular fluid of women with polycystic ovary syndrome and its correlation with IVF outcome. Reprod BioMed Online. 2018;36:483–9. https://doi.org/10.1016/j.rbmo.2017.12.020.

    Article  CAS  Google Scholar 

  34. Wallace KL, Johnson V, Sopelak V, Hines R. Clomiphene citrate versus letrozole: molecular analysis of the endometrium in women with polycystic ovary syndrome. Fertil Steril. 2011;96:1051–6. https://doi.org/10.1016/j.fertnstert.2011.07.1092.

    Article  CAS  Google Scholar 

  35. Arici A, Oral E, Bahtiyar O, Engin O, Seli E, Jones EE. Leukaemia inhibitory factor expression in human follicular fluid and ovarian cells. Hum Reprod. 1997;12:1233–9. https://doi.org/10.1093/humrep/12.6.1233.

    Article  CAS  Google Scholar 

  36. Lédée-Bataille N, Laprée-Delage G, Taupin JL, Dubanchet S, Taieb J, Moreau JF, et al. Follicular fluid concentration of leukaemia inhibitory factor is decreased among women with polycystic ovarian syndrome during assisted reproduction cycles. Hum Reprod. 2001;16:2073–8. https://doi.org/10.1093/humrep/16.10.2073.

    Article  Google Scholar 

  37. Niwa H, Burdon T, Chambers I, Smith A. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev. 1998;12:2048–60. https://doi.org/10.1101/gad.12.13.2048.

    Article  CAS  Google Scholar 

  38. Nicola NA, Babon JJ. Leukemia inhibitory factor (LIF). Cytokine Growth Factor Rev. 2015;26:533–44. https://doi.org/10.1016/j.cytogfr.2015.07.001.

    Article  CAS  Google Scholar 

  39. Lee JH, Kim TH, Oh SJ, Yoo JY, Akira S, Ku BJ, et al. Signal transducer and activator of transcription-3 (Stat3) plays a critical role in implantation via progesterone receptor in uterus. FASEB J. 2013;27:2553–63. https://doi.org/10.1096/fj.12-225664.

    Article  CAS  Google Scholar 

  40. Pawar S, Starosvetsky E, Orvis GD, Behringer RR, Bagchi IC, Bagchi MK. STAT3 regulates uterine epithelial remodeling and epithelial-stromal crosstalk during implantation. Mol Endocrinol. 2013;27:1996–2012. https://doi.org/10.1210/me.2013-1206.

    Article  CAS  Google Scholar 

  41. Sun X, Bartos A, Whitsett JA, Dey SK. Uterine deletion of Gp130 or Stat3 shows implantation failure with increased estrogenic responses. Mol Endocrinol. 2013;27:1492–501. https://doi.org/10.1210/me.2013-1086.

    Article  CAS  Google Scholar 

  42. Li SY, Song Z, Song MJ, Qin JW, Zhao ML, Yang ZM. Impaired receptivity and decidualization in DHEA-induced PCOS mice. Sci Rep. 2016;6:38134. https://doi.org/10.1038/srep38134.

    Article  CAS  Google Scholar 

  43. Sutherland AE, Calarco PG, Damsky CH. Developmental regulation of integrin expression at the time of implantation in the mouse embryo. Development. 1993;119:1175–86.

    Article  CAS  Google Scholar 

  44. Kaneko Y, Murphy CR, Day ML. Extracellular matrix proteins secreted from both the endometrium and the embryo are required for attachment: a study using a co-culture model of rat blastocysts and Ishikawa cells. J Morphol. 2013;274:63–72. https://doi.org/10.1002/jmor.20076.

    Article  CAS  Google Scholar 

  45. Mokhtar MH, Giribabu N, Salleh N. Testosterone reduces tight junction complexity and down-regulates expression of Claudin-4 and occludin in the endometrium in ovariectomized, sex-steroid replacement rats. In Vivo. 2020;34:225–31. https://doi.org/10.21873/invivo.11764.

    Article  CAS  Google Scholar 

  46. Mokhtar HM, Giribabu N, Salleh N. Testosterone down-regulates expression of αVβ3-integrin, e-cadherin and mucin-1 during uterine receptivity period in rats. Sains Malaysiana. 2018;47:2509–17. https://doi.org/10.17576/jsm-2018-4710-28.

    Article  CAS  Google Scholar 

  47. Quezada S, Avellaira C, Johnson MC, Gabler F, Fuentes A, Vega M. Evaluation of steroid receptors, coregulators, and molecules associated with uterine receptivity in secretory endometria from untreated women with polycystic ovary syndrome. Fertil Steril. 2006;85:1017–26. https://doi.org/10.1016/j.fertnstert.2005.09.053.

    Article  CAS  Google Scholar 

  48. Akiyama SK. Integrins in cell adhesion and signaling. Hum Cell. 1996;9:181–6.

    CAS  Google Scholar 

  49. Harburger DS, Calderwood DA. Integrin signalling at a glance. J Cell Sci. 2009;122:159–63. https://doi.org/10.1242/jcs.018093.

    Article  CAS  Google Scholar 

  50. Li C, Zhou L, Xie Y, Guan C, Gao H. Effect of irisin on endometrial receptivity of rats with polycystic ovary syndrome. Gynecol Endocrinol. 2019;35:395–400. https://doi.org/10.1080/09513590.2018.1529158.

    Article  CAS  Google Scholar 

  51. Lopes IM, Maganhin CC, Oliveira-Filho RM, Simões RS, Simões MJ, Iwata MC, et al. Histomorphometric analysis and markers of endometrial receptivity embryonic implantation in women with polycystic ovary syndrome during the treatment with progesterone. Reprod Sci. 2014;21:930–8. https://doi.org/10.1177/1933719113519169.

    Article  CAS  Google Scholar 

  52. Antoniotti GS, Coughlan M, Salamonsen LA, Evans J. Obesity associated advanced glycation end products within the human uterine cavity adversely impact endometrial function and embryo implantation competence. Hum Reprod. 2018;33:654–65. https://doi.org/10.1093/humrep/dey029.

    Article  CAS  Google Scholar 

  53. Moran L, Tsagareli V, Norman R, Noakes M. Diet and IVF pilot study: short-term weight loss improves pregnancy rates in overweight/obese women undertaking IVF. Aust N Z J Obstet Gynaecol. 2011;51:455–9. https://doi.org/10.1111/j.1479-828X.2011.01343.x.

    Article  Google Scholar 

  54. Lin AW, Kazemi M, Jarrett BY, Vanden Brink H, Hoeger KM, Spandorfer SD, et al. Dietary and physical activity behaviors in women with polycystic ovary syndrome per the new international evidence-based guideline. Nutrients. 2019:11. https://doi.org/10.3390/nu11112711.

  55. Kazemi M, McBreairty LE, Zello GA, Pierson RA, Gordon JJ, Serrao SB, et al. A pulse-based diet and the therapeutic lifestyle changes diet in combination with health counseling and exercise improve health-related quality of life in women with polycystic ovary syndrome: secondary analysis of a randomized controlled trial. J Psychosom Obstet Gynaecol. 2020;41:144–53. https://doi.org/10.1080/0167482X.2019.1666820.

    Article  Google Scholar 

  56. Turner-McGrievy GM, Davidson CR, Wingard EE, Billings DL. Low glycemic index vegan or low-calorie weight loss diets for women with polycystic ovary syndrome: a randomized controlled feasibility study. Nutr Res. 2014;34:552–8. https://doi.org/10.1016/j.nutres.2014.04.011.

    Article  CAS  Google Scholar 

  57. Kazemi M, McBreairty LE, Chizen DR, Pierson RA, Chilibeck PD, Zello GA. A Comparison of a pulse-based diet and the therapeutic lifestyle changes diet in combination with exercise and health counselling on the cardio-metabolic risk profile in women with polycystic ovary syndrome: a randomized controlled trial. Nutrients. 2018:10. https://doi.org/10.3390/nu10101387.

  58. Ding Y, Xia BH, Zhang CJ, Zhuo GC. Mitochondrial tRNA(Leu(UUR)) C3275T, tRNA(Gln) T4363C and tRNA(Lys) A8343G mutations may be associated with PCOS and metabolic syndrome. Gene. 2018;642:299–306. https://doi.org/10.1016/j.gene.2017.11.049.

    Article  CAS  Google Scholar 

  59. Ding Y, Zhuo G, Zhang C. The mitochondrial tRNALeu(UUR) A3302G mutation may be associated with insulin resistance in woman with polycystic ovary syndrome. Reprod Sci. 2016;23:228–33. https://doi.org/10.1177/1933719115602777.

    Article  CAS  Google Scholar 

  60. Ilie IR. Advances in PCOS pathogenesis and progression-mitochondrial mutations and dysfunction. Adv Clin Chem. 2018;86:127–55. https://doi.org/10.1016/bs.acc.2018.05.003.

    Article  CAS  Google Scholar 

  61. Nejabati HR, Schmeisser K, Shahnazi V, Samimifar D, Faridvand Y, Bahrami-Asl Z, et al. N1-methylnicotinamide: an anti-ovarian aging hormetin. Ageing Res Rev. 2020;62:101131. https://doi.org/10.1016/j.arr.2020.101131.

    Article  CAS  Google Scholar 

  62. Safaei Z, Bakhshalizadeh S, Nasr-Esfahani MH, Akbari Sene A, Najafzadeh V, Soleimani M, et al. Vitamin D3 affects mitochondrial biogenesis through mitogen-activated protein kinase in polycystic ovary syndrome mouse model. J Cell Physiol. 2020;235:6113–26. https://doi.org/10.1002/jcp.29540.

    Article  CAS  Google Scholar 

  63. Saeed N, Hamzah IH, Al-Gharrawi S. Polycystic ovary syndrome dependency on mtDNA mutation; copy number and its association with insulin resistance. BMC Res Notes. 2019;12:455. https://doi.org/10.1186/s13104-019-4453-3.

    Article  CAS  Google Scholar 

  64. Finsterer J, Zarrouk-Mahjoub S. Polycystic ovary syndrome in mitochondrial disorders due mtDNA or nDNA variants. Am J Transl Res. 2018;10:13–5.

    CAS  Google Scholar 

  65. Zhuo G, Feng G, Leng J, Yu L, Jiang Y. A 9-bp deletion homoplasmy in women with polycystic ovary syndrome revealed by mitochondrial genome-mutation screen. Biochem Genet. 2010;48:157–63. https://doi.org/10.1007/s10528-009-9308-5.

    Article  CAS  Google Scholar 

  66. Skov V, Glintborg D, Knudsen S, Jensen T, Kruse TA, Tan Q, et al. Reduced expression of nuclear-encoded genes involved in mitochondrial oxidative metabolism in skeletal muscle of insulin-resistant women with polycystic ovary syndrome. Diabetes. 2007;56:2349–55. https://doi.org/10.2337/db07-0275.

    Article  CAS  Google Scholar 

  67. Ding Y, Xia BH, Zhang CJ, Zhuo GC. Mutations in mitochondrial tRNA genes may be related to insulin resistance in women with polycystic ovary syndrome. Am J Transl Res. 2017;9:2984–96.

    CAS  Google Scholar 

  68. Palacio JR, Iborra A, Ulcova-Gallova Z, Badia R, Martínez P. The presence of antibodies to oxidative modified proteins in serum from polycystic ovary syndrome patients. Clin Exp Immunol. 2006;144:217–22. https://doi.org/10.1111/j.1365-2249.2006.03061.x.

    Article  CAS  Google Scholar 

  69. Simpson IA, Dwyer D, Malide D, Moley KH, Travis A, Vannucci SJ. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295:E242–53. https://doi.org/10.1152/ajpendo.90388.2008.

    Article  CAS  Google Scholar 

  70. Maliqueo M, Sundström Poromaa I, Vanky E, Fornes R, Benrick A, Åkerud H, et al. Placental STAT3 signaling is activated in women with polycystic ovary syndrome. Hum Reprod. 2015;30:692–700. https://doi.org/10.1093/humrep/deu351.

    Article  CAS  Google Scholar 

  71. Ramathal CY, Bagchi IC, Taylor RN, Bagchi MK. Endometrial decidualization: of mice and men. Semin Reprod Med. 2010;28:17–26. https://doi.org/10.1055/s-0029-1242989.

    Article  CAS  Google Scholar 

  72. Piltonen TT, Chen JC, Khatun M, Kangasniemi M, Liakka A, Spitzer T, et al. Endometrial stromal fibroblasts from women with polycystic ovary syndrome have impaired progesterone-mediated decidualization, aberrant cytokine profiles and promote enhanced immune cell migration in vitro. Hum Reprod. 2015;30:1203–15. https://doi.org/10.1093/humrep/dev055.

    Article  CAS  Google Scholar 

  73. George AF, Jang KS, Nyegaard M, Neidleman J, Spitzer TL, Xie G, et al. Seminal plasma promotes decidualization of endometrial stromal fibroblasts in vitro from women with and without inflammatory disorders in a manner dependent on interleukin-11 signaling. Hum Reprod. 2020;35:617–40. https://doi.org/10.1093/humrep/deaa015.

    Article  CAS  Google Scholar 

  74. von Wolff M, Ursel S, Hahn U, Steldinger R, Strowitzki T. Glucose transporter proteins (GLUT) in human endometrium: expression, regulation, and function throughout the menstrual cycle and in early pregnancy. J Clin Endocrinol Metab. 2003;88:3885–92. https://doi.org/10.1210/jc.2002-021890.

    Article  CAS  Google Scholar 

  75. Frolova AI, Moley KH. Quantitative analysis of glucose transporter mRNAs in endometrial stromal cells reveals critical role of GLUT1 in uterine receptivity. Endocrinology. 2011;152:2123–8. https://doi.org/10.1210/en.2010-1266.

    Article  CAS  Google Scholar 

  76. Xing AY, Challier JC, Lepercq J, Caüzac M, Charron MJ, Girard J, et al. Unexpected expression of glucose transporter 4 in villous stromal cells of human placenta. J Clin Endocrinol Metab. 1998;83:4097–101. https://doi.org/10.1210/jcem.83.11.5290.

    Article  CAS  Google Scholar 

  77. Bell GI, Kayano T, Buse JB, Burant CF, Takeda J, Lin D, et al. Molecular biology of mammalian glucose transporters. Diabetes Care. 1990;13:198–208. https://doi.org/10.2337/diacare.13.3.198.

    Article  CAS  Google Scholar 

  78. Richter EA, Hargreaves M. Exercise, GLUT4, and skeletal muscle glucose uptake. Physiol Rev. 2013;93:993–1017. https://doi.org/10.1152/physrev.00038.2012.

    Article  CAS  Google Scholar 

  79. Diamanti-Kandarakis E, Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr Rev. 2012;33:981–1030. https://doi.org/10.1210/er.2011-1034.

    Article  CAS  Google Scholar 

  80. Ujvari D, Hulchiy M, Calaby A, Nybacka Å, Byström B, Hirschberg AL. Lifestyle intervention up-regulates gene and protein levels of molecules involved in insulin signaling in the endometrium of overweight/obese women with polycystic ovary syndrome. Hum Reprod. 2014;29:1526–35. https://doi.org/10.1093/humrep/deu114.

    Article  CAS  Google Scholar 

  81. Oróstica L, García P, Vera C, García V, Romero C, Vega M. Effect of TNF-α on molecules related to the insulin action in endometrial cells exposed to hyperandrogenic and hyperinsulinic conditions characteristics of polycystic ovary syndrome. Reprod Sci. 2018;25:1000–9. https://doi.org/10.1177/1933719117732157.

    Article  CAS  Google Scholar 

  82. Zhang L, Liao Q. Effects of testosterone and metformin on glucose metabolism in endometrium. Fertil Steril. 2010;93:2295–8. https://doi.org/10.1016/j.fertnstert.2009.01.096.

    Article  CAS  Google Scholar 

  83. Mertens HJ, Heineman MJ, Theunissen PH, de Jong FH, Evers JL. Androgen, estrogen and progesterone receptor expression in the human uterus during the menstrual cycle. Eur J Obstet Gynecol Reprod Biol. 2001;98:58–65. https://doi.org/10.1016/s0301-2115(00)00554-6.

    Article  CAS  Google Scholar 

  84. Zhang Y, Sun X, Sun X, Meng F, Hu M, Li X, et al. Molecular characterization of insulin resistance and glycolytic metabolism in the rat uterus. Sci Rep. 2016;6:30679. https://doi.org/10.1038/srep30679.

    Article  CAS  Google Scholar 

  85. Cabrera-Cruz H, Oróstica L, Plaza-Parrochia F, Torres-Pinto I, Romero C, Vega M. The insulin-sensitizing mechanism of myo-inositol is associated with AMPK activation and GLUT-4 expression in human endometrial cells exposed to a PCOS environment. Am J Physiol Endocrinol Metab. 2020;318:E237–48. https://doi.org/10.1152/ajpendo.00162.2019.

    Article  CAS  Google Scholar 

  86. Zhai J, Liu CX, Tian ZR, Jiang QH, Sun YP. Effects of metformin on the expression of GLUT4 in endometrium of obese women with polycystic ovary syndrome. Biol Reprod. 2012;87:29. https://doi.org/10.1095/biolreprod.112.099788.

    Article  CAS  Google Scholar 

  87. Carvajal R, Rosas C, Kohan K, Gabler F, Vantman D, Romero C, et al. Metformin augments the levels of molecules that regulate the expression of the insulin-dependent glucose transporter GLUT4 in the endometria of hyperinsulinemic PCOS patients. Hum Reprod. 2013;28:2235–44. https://doi.org/10.1093/humrep/det116.

    Article  CAS  Google Scholar 

  88. Huang S, Czech MP. The GLUT4 glucose transporter. Cell Metab. 2007;5:237–52. https://doi.org/10.1016/j.cmet.2007.03.006.

    Article  CAS  Google Scholar 

  89. Torry DS, Leavenworth J, Chang M, Maheshwari V, Groesch K, Ball ER, et al. Angiogenesis in implantation. J Assist Reprod Genet. 2007;24:303–15. https://doi.org/10.1007/s10815-007-9152-7.

    Article  Google Scholar 

  90. Thomas JR, Appios A, Zhao X, Dutkiewicz R, Donde M, Lee C, et al. Phenotypic and functional characterization of first-trimester human placental macrophages, Hofbauer cells. J Exp Med. 2021:218. https://doi.org/10.1084/jem.20200891.

  91. Pereira MM, Mainigi M, Strauss JF. Secretory products of the corpus luteum and preeclampsia. Hum Reprod Update. 2021;27:651–72. https://doi.org/10.1093/humupd/dmab003.

    Article  CAS  Google Scholar 

  92. Tal R, Seifer DB, Arici A. The emerging role of angiogenic factor dysregulation in the pathogenesis of polycystic ovarian syndrome. Semin Reprod Med. 2015;33:195–207. https://doi.org/10.1055/s-0035-1552582.

    Article  CAS  Google Scholar 

  93. Wang L, Lv S, Li F, Bai E, Yang X. Letrozole versus clomiphene citrate and natural cycle: endometrial receptivity during implantation window in women with polycystic ovary syndrome. Front Endocrinol (Lausanne). 2020;11:532692. https://doi.org/10.3389/fendo.2020.532692.

    Article  Google Scholar 

  94. Zhao DM, Shan YH, Li FH, Jiang L, Qu QL. Correlation between endometrial receptivity with expressions of IL-1 and VEGF in rats with polycystic ovary syndrome. Eur Rev Med Pharmacol Sci. 2019;23(13):5575–80.

    Google Scholar 

  95. Gong H, Wu W, Xu J, Yu D, Qiao B, Liu H, et al. Flutamide ameliorates uterine decidualization and angiogenesis in the mouse hyperandrogenemia model during mid-pregnancy. PLoS One. 2019;14:e0217095. https://doi.org/10.1371/journal.pone.0217095.

    Article  CAS  Google Scholar 

  96. Degaki KY, Chen Z, Yamada AT, Croy BA. Delta-like ligand (DLL)1 expression in early mouse decidua and its localization to uterine natural killer cells. PLoS One. 2012;7:e52037. https://doi.org/10.1371/journal.pone.0052037.

    Article  CAS  Google Scholar 

  97. Liu B, Mariee N, Laird S, Smith J, Li J, Li TC. The prognostic value of uNK cell count and histological dating in the mid-luteal phase of women with reproductive failure. Eur J Obstet Gynecol Reprod Biol. 2014;181:171–5. https://doi.org/10.1016/j.ejogrb.2014.07.010.

    Article  Google Scholar 

  98. Lédée N, Petitbarat M, Chevrier L, Vitoux D, Vezmar K, Rahmati M, et al. The uterine immune profile may help women with repeated unexplained embryo implantation failure after in vitro fertilization. Am J Reprod Immunol. 2016;75:388–401. https://doi.org/10.1111/aji.12483.

    Article  CAS  Google Scholar 

  99. Zhao D, Qu Q, Dai H, Liu Y, Jiang L, Huang X, et al. Effects of hypoxia-inducible factor-1α on endometrial receptivity of women with polycystic ovary syndrome. Mol Med Rep. 2018;17:414–21. https://doi.org/10.3892/mmr.2017.7890.

    Article  CAS  Google Scholar 

  100. Critchley HO, Osei J, Henderson TA, Boswell L, Sales KJ, Jabbour HN, et al. Hypoxia-inducible factor-1alpha expression in human endometrium and its regulation by prostaglandin E-series prostanoid receptor 2 (EP2). Endocrinology. 2006;147:744–53. https://doi.org/10.1210/en.2005-1153.

    Article  CAS  Google Scholar 

  101. Giordano MV, Giordano LA, Gomes RC, et al. The evaluation of endometrial sulfate glycosaminoglycans in women with polycystic ovary syndrome. Gynecol Endocrinol. 2015;31(4):278–81.

    Article  CAS  Google Scholar 

  102. van Wijk XM, van Kuppevelt TH. Heparan sulfate in angiogenesis: a target for therapy. Angiogenesis. 2014;17(3):443–62.

    Google Scholar 

  103. Wood JR, Dumesic DA, Abbott DH, Strauss JF 3rd. Molecular abnormalities in oocytes from women with polycystic ovary syndrome revealed by microarray analysis. J Clin Endocrinol Metab. 2007;92:705–13. https://doi.org/10.1210/jc.2006-2123.

    Article  CAS  Google Scholar 

  104. Goodarzi MO, Carmina E, Azziz R. DHEA, DHEAS and PCOS. J Steroid Biochem Mol Biol. 2015;145:213–25. https://doi.org/10.1016/j.jsbmb.2014.06.003.

    Article  CAS  Google Scholar 

  105. Ticconi C, Pietropolli A, Di Simone N, Piccione E, Fazleabas A. Endometrial immune dysfunction in recurrent pregnancy loss. Int J Mol Sci. 2019:20. https://doi.org/10.3390/ijms20215332.

  106. Paktinat S, Esfandyari S, Karamian A, Koochaki A, Asadirad A, Ghaffari Novin M, et al. Conditioned medium derived from seminal extracellular vesicles-exposed endometrial stromal cells induces inflammatory cytokine secretion by macrophages. Eur J Obstet Gynecol Reprod Biol. 2021;262:174–81. https://doi.org/10.1016/j.ejogrb.2021.05.019.

    Article  CAS  Google Scholar 

  107. Xu YY, Wang SC, Li DJ, Du MR. Co-signaling molecules in maternal-fetal immunity. Trends Mol Med. 2017;23:46–58. https://doi.org/10.1016/j.molmed.2016.11.001.

    Article  CAS  Google Scholar 

  108. He YY, He XJ, Guo PF, Du MR, Shao J, Li MQ, et al. The decidual stromal cells-secreted CCL2 induces and maintains decidual leukocytes into Th2 bias in human early pregnancy. Clin Immunol. 2012;145:161–73. https://doi.org/10.1016/j.clim.2012.07.017.

    Article  CAS  Google Scholar 

  109. Wang S, Cao C, Piao H, Li Y, Tao Y, Zhang X, et al. Tim-3 protects decidual stromal cells from toll-like receptor-mediated apoptosis and inflammatory reactions and promotes Th2 bias at the maternal-fetal interface. Sci Rep. 2015;5:9013. https://doi.org/10.1038/srep09013.

    Article  CAS  Google Scholar 

  110. Tao Y, Li YH, Piao HL, Zhou WJ, Zhang D, Fu Q, et al. CD56(bright)CD25+ NK cells are preferentially recruited to the maternal/fetal interface in early human pregnancy. Cell Mol Immunol. 2015;12:77–86. https://doi.org/10.1038/cmi.2014.26.

    Article  CAS  Google Scholar 

  111. Amjadi F, Mehdizadeh M, Ashrafi M, Nasrabadi D, Taleahmad S, Mirzaei M, et al. Distinct changes in the proteome profile of endometrial tissues in polycystic ovary syndrome compared with healthy fertile women. Reprod BioMed Online. 2018;37:184–200. https://doi.org/10.1016/j.rbmo.2018.04.043.

    Article  CAS  Google Scholar 

  112. Paravati R, De Mello N, Onyido EK, Francis LW, Brüsehafer K, Younas K, et al. Differential regulation of osteopontin and CD44 correlates with infertility status in PCOS patients. J Mol Med (Berl). 2020;98:1713–25. https://doi.org/10.1007/s00109-020-01985-w.

    Article  CAS  Google Scholar 

  113. Alikhani M, Amjadi F, Mirzaei M, Wu Y, Shekari F, Ashrafi M, et al. Proteome analysis of endometrial tissue from patients with PCOS reveals proteins predicted to impact the disease. Mol Biol Rep. 2020;47:8763–74. https://doi.org/10.1007/s11033-020-05924-3.

    Article  CAS  Google Scholar 

  114. Liu S, Hong L, Mo M, Xiao S, Chen C, Li Y, et al. Evaluation of endometrial immune status of polycystic ovary syndrome. J Reprod Immunol. 2021;144:103282. https://doi.org/10.1016/j.jri.2021.103282.

    Article  CAS  Google Scholar 

  115. Albaghdadi A, Kan F. Therapeutic potentials of low-dose tacrolimus for aberrant endometrial features in polycystic ovary syndrome. Int J Mol Sci. 2021:22. https://doi.org/10.3390/ijms22062872.

  116. Oróstica L, Poblete C, Romero C, Vega M. Pro-inflammatory markers negatively regulate IRS1 in endometrial cells and endometrium from women with obesity and PCOS. Reprod Sci. 2020;27:290–300. https://doi.org/10.1007/s43032-019-00026-3.

    Article  CAS  Google Scholar 

  117. Koc O, Ozdemirici S, Acet M, Soyturk U, Aydin S. Nuclear factor-κB expression in the endometrium of normal and overweight women with polycystic ovary syndrome. J Obstet Gynaecol. 2017;37:924–30. https://doi.org/10.1080/01443615.2017.1315563.

    Article  CAS  Google Scholar 

  118. Vera C, Vega M, Garcia V, et al. Proinflammatory environment and role of TNF-alpha in endometrial function of obese women having polycystic ovarian syndrome. Int J Obes. 2016.

  119. Jiang NX, Li XL. The disorders of endometrial receptivity in PCOS and its mechanisms. Reprod Sci. 2021. https://doi.org/10.1007/s43032-021-00629-9.

  120. Morin-Papunen L, Rantala AS, Unkila-Kallio L, et al. Metformin improves pregnancy and live-birth rates in women with polycystic ovary syndrome (PCOS): a multicenter, double-blind, placebo-controlled randomized trial. J Clin Endocrinol Metab. 2012;97(5):1492–500.

    Article  CAS  Google Scholar 

  121. Garabadu D, Krishnamurthy S. Metformin attenuates hepatic insulin resistance in type-2 diabetic rats through PI3K/Akt/GLUT-4 signalling independent to bicuculline-sensitive GABA(A) receptor stimulation. Pharm Biol. 2017;55(1):722–8.

    Article  CAS  Google Scholar 

  122. Huang P, Wei L, Li X. A study of intrauterine infusion of human chorionic gonadotropin (hCG) before frozen-thawed embryo transfer after two or more implantation failures. Gynecol Endocrinol. 2017;33(1):67–9.

    Article  CAS  Google Scholar 

  123. Laokirkkiat P, Thanaboonyawat I, Boonsuk S, Petyim S, Prechapanich J, Choavaratana R. Increased implantation rate after intrauterine infusion of a small volume of human chorionic gonadotropin at the time of embryo transfer: a randomized, double-blind controlled study. Arch Gynecol Obstet. 2019;299(1):267–75.

    Article  CAS  Google Scholar 

  124. Liu H, Zhang J, Wang B, Kuang Y. Effect of endometrial thickness on ectopic pregnancy in frozen embryo transfer cycles: an analysis including 17,244 pregnancy cycles. Fertil Steril. 2020;113:131–9. https://doi.org/10.1016/j.fertnstert.2019.09.003.

    Article  Google Scholar 

  125. Zhai J, Yao GD, Wang JY, Yang QL, Wu L, Chang ZY, et al. Metformin regulates key microRNAs to improve endometrial receptivity through increasing implantation marker gene expression in patients with pcos undergoing IVF/ICSI. Reprod Sci. 2019;26:1439–48. https://doi.org/10.1177/1933719118820466.

    Article  CAS  Google Scholar 

  126. Wu Y, Tu M, Huang Y, Liu Y, Zhang D. Association of metformin with pregnancy outcomes in women with polycystic ovarian syndrome undergoing in vitro fertilization: a systematic review and meta-analysis. JAMA Netw Open. 2020;3:e2011995. https://doi.org/10.1001/jamanetworkopen.2020.11995.

    Article  Google Scholar 

  127. Bordewijk EM, Nahuis M, Costello MF, Van der Veen F, Tso LO, Mol BW, et al. Metformin during ovulation induction with gonadotrophins followed by timed intercourse or intrauterine insemination for subfertility associated with polycystic ovary syndrome. Cochrane Database Syst Rev. 2017;1:CD009090. https://doi.org/10.1002/14651858.CD009090.pub2.

    Article  Google Scholar 

Download references

Funding

This work was supported by the Natural Science Foundation of Shanghai (No.19ZR1406700 to SHI Yingli) and the National Natural Science Foundation of China (No.81471438 to SHI Yingli).

Author information

Authors and Affiliations

Authors

Contributions

YLS conceived this idea. FG and YFH took part in the literature retrieval. FG wrote the manuscript, and Taniya checked the writing of the essay. All authors listed have made a substantial, direct, and intellectual contribution to the work and approved it for publication.

Corresponding author

Correspondence to Yingli Shi.

Ethics declarations

Ethics Approval

This was a review of existing literature and did not need review by the institutional ethics committee.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, F., Huang, Y., Fernando, T. et al. Altered Molecular Pathways and Biomarkers of Endometrial Receptivity in Infertile Women with Polycystic Ovary Syndrome. Reprod. Sci. 29, 3335–3345 (2022). https://doi.org/10.1007/s43032-022-00845-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00845-x

Keywords

Navigation