Skip to main content

Advertisement

Log in

Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The use of electronic devices such as mobile phones has had a long stretch of rapid growth all over the world. Therefore, exposure to radio frequency radiation (RFR) has increased enormously. Here, we aimed to assess the balance between cell death and proliferation and also investigate the involvement of the JNK/p38 MAPK signaling pathway in the testis of rats exposed to 900 MHz RFR in acute and chronic periods (2 h/day, 5 days/week) for 1 or 10 weeks, respectively. The expression of proliferating cell nuclear antigen (PCNA), Bcl-xL, cleaved caspase-3, phosphorylated-JNK (p-JNK), and phosphorylated-p38 (p-p38) was analyzed in line with histopathology and TUNEL analysis in rat testis. There were no histopathological differences between sham and RFR groups in the acute and chronic groups. PCNA expression was not altered between groups in both periods. However, alterations for cleaved caspase-3 and Bcl-xL were observed depending on the exposure period. TUNEL analysis showed a significant increase in the RFR group in the acute period, whereas no difference in the chronic groups for the apoptotic index was reported. In addition, both p-p38 and p-JNK protein expressions increased significantly in RFR groups in both periods. Our study indicated that 900 MHz RFR might result in alterations during acute period exposure for several parameters, but this can be ameliorated in the chronic period in rat testis. Here, we also report the involvement of the p38/JNK-mediated MAPK pathway after exposure to 900 MHz RFR. Hence, this information might shed light in future studies toward detailed molecular mechanisms in male reproduction and infertility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The data supporting the findings of this study are available within this article.

Code Availability

Not applicable.

References

  1. Krause CM, Sillanmaki L, Koivisto M, Haggqvist A, Saarela C, Revonsuo A, Laine M, Hamalainen H. Effects of electromagnetic field emitted by cellular phones on the EEG during a memory task. Neuroreport. 2000;11(4):761–4.

    Article  CAS  PubMed  Google Scholar 

  2. Albertini A, Zucchini P, Noera G, Cadossi R, Pace Napoleone C, Pierangeli A. Protective effect of low frequency low energy pulsing electromagnetic fields on acute experimental myocardial infarcts in rats. Bioelectromagnetics. 1999;20(6):372–7.

    Article  CAS  PubMed  Google Scholar 

  3. Loftis M. Sources of noise-induced hearing loss. AAOHN J. 2007;55(11):476.

    Article  PubMed  Google Scholar 

  4. Hardell L. World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review). Int J Oncol. 2017;51(2):405–13.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Hardell L, Carlberg M, Soderqvist F, Hansson MK. Meta-analysis of long-term mobile phone use and the association with brain tumours. Int J Oncol. 2008;32(5):1097–103.

    PubMed  Google Scholar 

  6. Hardell L, Koppel T, Carlberg M, Ahonen M, Hedendahl L. Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields. Int J Oncol. 2016;49(4):1315–24.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zhang KY, Hui X, Du L, Xing JL, Zhang B, Bai QS, Xu YQ, Zhou YC, Zhang JP, Zhou Y, Ding GR. Enhancement of X-ray induced apoptosis by mobile phone-like radio-frequency electromagnetic fields in mouse spermatocyte-derived cells. Int J Environ Res Public Health. 2017;14(6):616.

    Article  CAS  PubMed Central  Google Scholar 

  8. Dasdag S, Akdag MZ, Ulukaya E, Uzunlar AK, Yegin D. Mobile phone exposure does not induce apoptosis on spermatogenesis in rats. Arch Med Res. 2008;39(1):40–4.

    Article  CAS  PubMed  Google Scholar 

  9. Shahin S, Singh SP, Chaturvedi CM. 2.45 GHz microwave radiation induced oxidative and nitrosative stress mediated testicular apoptosis: involvement of a p53 dependent bax-caspase-3 mediated pathway. Environ Toxicol. 2018;33(9):931–45.

    CAS  PubMed  Google Scholar 

  10. Hardell L, Carlberg M, Hansson MK. Pooled analysis of case-control studies on malignant brain tumours and the use of mobile and cordless phones including living and deceased subjects. Int J Oncol. 2011;38(5):1465–74.

    Article  PubMed  Google Scholar 

  11. Pandey N, Giri S, Das S, Upadhaya P. Radiofrequency radiation (900 MHz)-induced DNA damage and cell cycle arrest in testicular germ cells in swiss albino mice. Toxicol Ind Health. 2017;33(4):373–84.

    Article  CAS  PubMed  Google Scholar 

  12. Odacı E, Hancı H, Yuluğ E, Türedi S, Aliyazıcıoğlu Y, Kaya H, Çolakoğlu S. Effects of prenatal exposure to a 900 MHz electromagnetic field on 60-day-old rat testis and epididymal sperm quality. Biotech Histochem. 2016;91(1):9–19.

    Article  CAS  PubMed  Google Scholar 

  13. Kesari KK, Kumar S, Behari J. 900-MHz microwave radiation promotes oxidation in rat brain. Electromagn Biol Med. 2011;30(4):219–34.

    Article  CAS  PubMed  Google Scholar 

  14. Abolfathi AA, Mohajeri D, Rezaie A, Nazeri M. Protective effects of green tea extract against hepatic tissue injury in streptozotocin-induced diabetic rats. Evid Based Complement Alternat Med. 2012;2012:740671.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aitken RJ, Roman SD. Antioxidant systems and oxidative stress in the testes. Oxidative Med Cell Longev. 2008;1(1):15–24.

    Article  Google Scholar 

  16. Maskey D, Kim M, Aryal B, Pradhan J, Choi IY, Park KS, Son T, Hong SY, Kim SB, Kim HG, Kim MJ. Effect of 835 MHz radiofrequency radiation exposure on calcium binding proteins in the hippocampus of the mouse brain. Brain Res. 2010;1313:232–41.

    Article  CAS  PubMed  Google Scholar 

  17. Aitken RJ, De Iuliis GN, Finnie JM, Hedges A, McLachlan RI. Analysis of the relationships between oxidative stress, DNA damage and sperm vitality in a patient population: development of diagnostic criteria. Hum Reprod. 2010;25(10):2415–26.

    Article  CAS  PubMed  Google Scholar 

  18. Naziroglu M. New molecular mechanisms on the activation of TRPM2 channels by oxidative stress and ADP-ribose. Neurochem Res. 2007;32(11):1990–2001.

    Article  CAS  PubMed  Google Scholar 

  19. Naziroglu M. TRPM2 cation channels, oxidative stress and neurological diseases: where are we now? Neurochem Res. 2011;36(3):355–66.

    Article  CAS  PubMed  Google Scholar 

  20. Naziroglu M. Molecular role of catalase on oxidative stress-induced Ca(2+) signaling and TRP cation channel activation in nervous system. J Recept Signal Transduct Res. 2012;32(3):134–41.

    Article  CAS  PubMed  Google Scholar 

  21. Bennett D, Janes M, Sati L, Sakkas D, Huszar G. Oxidative processes and paternal contribution of spermatozoa: relationship between reactive oxygen species (ROS) production and unexplained male infertility. Fertil Steril. 2005;84:S76–S7.

    Article  Google Scholar 

  22. Celik-Ozenci C, Sati L, Huszar G. Role of sperm-hyaluronic acid binding in the evaluation and treatment of subfertile men with ROS-affected semen. In: in male infertility. Cham: Springer; 2020. p. 695–706.

    Chapter  Google Scholar 

  23. Aitken RJ, Fisher HM, Fulton N, Gomez E, Knox W, Lewis B, Irvine S. Reactive oxygen species generation by human spermatozoa is induced by exogenous NADPH and inhibited by the flavoprotein inhibitors diphenylene iodonium and quinacrine. Mol Reprod Dev. 1997;47(4):468–82.

    Article  CAS  PubMed  Google Scholar 

  24. Agarwal A, Makker K, Sharma R. Clinical relevance of oxidative stress in male factor infertility: an update. Am J Reprod Immunol. 2008;59(1):2–11.

    Article  CAS  PubMed  Google Scholar 

  25. Tremellen K. Oxidative stress and male infertility--a clinical perspective. Hum Reprod Update. 2008;14(3):243–58.

    Article  CAS  PubMed  Google Scholar 

  26. Zalata A, El-Samanoudy AZ, Shaalan D, El-Baiomy Y, Mostafa T. In vitro effect of cell phone radiation on motility, DNA fragmentation and clusterin gene expression in human sperm. Int J Fertil Steril. 2015;9(1):129–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Agarwal A, Deepinder F, Sharma RK, Ranga G, Li J. Effect of cell phone usage on semen analysis in men attending infertility clinic: an observational study. Fertil Steril. 2008;89(1):124–8.

    Article  PubMed  Google Scholar 

  28. Kumar S, Nirala JP, Behari J, Paulraj R. Effect of electromagnetic irradiation produced by 3G mobile phone on male rat reproductive system in a simulated scenario. Indian J Exp Biol. 2014;52(9):890–7.

    PubMed  Google Scholar 

  29. Yan JG, Agresti M, Bruce T, Yan YH, Granlund A, Matloub HS. Effects of cellular phone emissions on sperm motility in rats. Fertil Steril. 2007;88(4):957–64.

    Article  CAS  PubMed  Google Scholar 

  30. Kesari KK, Kumar S, Behari J. Mobile phone usage and male infertility in Wistar rats. Indian J Exp Biol. 2010;48(10):987–92.

    CAS  PubMed  Google Scholar 

  31. Adams JA, Galloway TS, Mondal D, Esteves SC, Mathews F. Effect of mobile telephones on sperm quality: a systematic review and meta-analysis. Environ Int. 2014;70:106–12.

    Article  PubMed  Google Scholar 

  32. Kilgallon SJ, Simmons LW. Image content influences men's semen quality. Biol Lett. 2005;1(3):253–5.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Slater AF, Stefan C, Nobel I, van den Dobbelsteen DJ, Orrenius S. Intracellular redox changes during apoptosis. Cell Death Differ. 1996;3(1):57–62.

    CAS  PubMed  Google Scholar 

  34. Davis RJ. The mitogen-activated protein kinase signal transduction pathway. J Biol Chem. 1993;268(20):14553–6.

    Article  CAS  PubMed  Google Scholar 

  35. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37–40.

    Article  CAS  PubMed  Google Scholar 

  36. McCubrey JA, Lahair MM, Franklin RA. Reactive oxygen species-induced activation of the MAP kinase signaling pathways. Antioxid Redox Signal. 2006;8(9-10):1775–89.

    Article  CAS  PubMed  Google Scholar 

  37. Dent P, Yacoub A, Fisher PB, Hagan MP, Grant S. MAPK pathways in radiation responses. Oncogene. 2003;22(37):5885–96.

    Article  CAS  PubMed  Google Scholar 

  38. Engelberg D. Stress-activated protein kinases-tumor suppressors or tumor initiators? Semin Cancer Biol. 2004;14(4):271–82.

    Article  CAS  PubMed  Google Scholar 

  39. Kyriakis JM, Avruch J. Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev. 2001;81(2):807–69.

    Article  CAS  PubMed  Google Scholar 

  40. Reddy KB, Nabha SM, Atanaskova N. Role of MAP kinase in tumor progression and invasion. Cancer Metastasis Rev. 2003;22(4):395–403.

    Article  CAS  PubMed  Google Scholar 

  41. Wilkinson MG, Millar JB. Control of the eukaryotic cell cycle by MAP kinase signaling pathways. FASEB J. 2000;14(14):2147–57.

    Article  CAS  PubMed  Google Scholar 

  42. Johnson GL, Lapadat R. Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science. 2002;298(5600):1911–2.

    Article  CAS  PubMed  Google Scholar 

  43. Navarro R, Busnadiego I, Ruiz-Larrea MB, Ruiz-Sanz JI. Superoxide anions are involved in doxorubicin-induced ERK activation in hepatocyte cultures. Ann N Y Acad Sci. 2006;1090:419–28.

    Article  CAS  PubMed  Google Scholar 

  44. Maundrell K, Antonsson B, Magnenat E, Camps M, Muda M, Chabert C, Gillieron C, Boschert U, Vial-Knecht E, Martinou JC, Arkinstall S. Bcl-2 undergoes phosphorylation by c-Jun N-terminal kinase/stress-activated protein kinases in the presence of the constitutively active GTP-binding protein Rac1. J Biol Chem. 1997;272(40):25238–42.

    Article  CAS  PubMed  Google Scholar 

  45. Yu C, Minemoto Y, Zhang J, Liu J, Tang F, Bui TN, Xiang J, Lin A. JNK suppresses apoptosis via phosphorylation of the proapoptotic Bcl-2 family protein BAD. Mol Cell. 2004;13(3):329–40.

    Article  CAS  PubMed  Google Scholar 

  46. Yu G, Tang Z, Chen H, Chen Z, Wang L, Cao H, Wang G, Xing J, Shen H, Cheng Q. Long-term exposure to 4G smartphone radiofrequency electromagnetic radiation diminished male reproductive potential by directly disrupting Spock3–MMP2-BTB axis in the testes of adult rats. Sci Total Environ. 2020;698:133860.

    Article  CAS  PubMed  Google Scholar 

  47. Srivastava RK, Mi QS, Hardwick JM, Longo DL. Deletion of the loop region of Bcl-2 completely blocks paclitaxel-induced apoptosis. Proc Natl Acad Sci U S A. 1999;96(7):3775–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Nebreda AR, Porras A. p38 MAP kinases: beyond the stress response. Trends Biochem Sci. 2000;25(6):257–60.

    Article  CAS  PubMed  Google Scholar 

  49. Takenobu H, Yamazaki A, Hirata M, Umata T, Mekada E. The stress- and inflammatory cytokine-induced ectodomain shedding of heparin-binding epidermal growth factor-like growth factor is mediated by p38 MAPK, distinct from the 12-O-tetradecanoylphorbol-13-acetate- and lysophosphatidic acid-induced signaling cascades. J Biol Chem. 2003;278(19):17255–62.

    Article  CAS  PubMed  Google Scholar 

  50. Abe MK, Kuo WL, Hershenson MB, Rosner MR. Extracellular signal-regulated kinase 7 (ERK7), a novel ERK with a C-terminal domain that regulates its activity, its cellular localization, and cell growth. Mol Cell Biol. 1999;19(2):1301–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. De Cesaris P, Starace D, Starace G, Filippini A, Stefanini M, Ziparo E. Activation of Jun N-terminal kinase/stress-activated protein kinase pathway by tumor necrosis factor alpha leads to intercellular adhesion molecule-1 expression. J Biol Chem. 1999;274(41):28978–82.

    Article  PubMed  Google Scholar 

  52. Shiraishi K, Yoshida K, Fujimiya T, Naito K. Activation of mitogen activated protein kinases and apoptosis of germ cells after vasectomy in the rat. J Urol. 2002;168(3):1273–8.

    Article  CAS  PubMed  Google Scholar 

  53. Gupta S, Barrett T, Whitmarsh AJ, Cavanagh J, Sluss HK, Derijard B, Davis RJ. Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 1996;15(11):2760–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. De Cesaris P, Starace D, Riccioli A, Padula F, Filippini A, Ziparo E. Tumor necrosis factor-alpha induces interleukin-6 production and integrin ligand expression by distinct transduction pathways. J Biol Chem. 1998;273(13):7566–71.

    Article  PubMed  Google Scholar 

  55. Crepieux P, Marion S, Martinat N, Fafeur V, Vern YL, Kerboeuf D, Guillou F, Reiter E. The ERK-dependent signalling is stage-specifically modulated by FSH, during primary Sertoli cell maturation. Oncogene. 2001;20(34):4696–709.

    Article  CAS  PubMed  Google Scholar 

  56. Sun QY, Breitbart H, Schatten H. Role of the MAPK cascade in mammalian germ cells. Reprod Fertil Dev. 1999;11(7-8):443–50.

    Article  PubMed  Google Scholar 

  57. Sengupta P. The laboratory rat: relating its age with human's. Int J Prev Med. 2013;4(6):624.

    PubMed  PubMed Central  Google Scholar 

  58. Bodera P, Antkowiak B, Paluch M, Sirav B, Siwicki AK, Stankiewicz W. The effects of radio-frequency radiation (RFR) exposure on the analgesic efficacy of morphine in healthy rats and rats with inflammation. Int J Occup Med Environ Health. 2019;32(4):465–74.

    Article  PubMed  Google Scholar 

  59. Alkis ME, Bilgin HM, Akpolat V, Dasdag S, Yegin K, Yavas MC, Akdag MZ. Effect of 900-, 1800-, and 2100-MHz radiofrequency radiation on DNA and oxidative stress in brain. Electromagn Biol Med. 2019;38(1):32–47.

    Article  CAS  PubMed  Google Scholar 

  60. Ammari M, Gamez C, Lecomte A, Sakly M, Abdelmelek H, De Seze R. GFAP expression in the rat brain following sub-chronic exposure to a 900 MHz electromagnetic field signal. Int J Radiat Biol. 2010;86(5):367–75.

    Article  CAS  PubMed  Google Scholar 

  61. Burkhardt M, Spinelli Y, Kuster N. Exposure setup to test effects of wireless communications systems on the CNS. Health Phys. 1997;73(5):770–8.

    Article  CAS  PubMed  Google Scholar 

  62. Fritze K, Wiessner C, Kuster N, Sommer C, Gass P, Hermann D, Kiessling M, Hossmann K-A. Effect of global system for mobile communication microwave exposure on the genomic response of the rat brain. Neuroscience. 1997;81(3):627–39.

    Article  CAS  PubMed  Google Scholar 

  63. Schönborn F, Poković K, Kuster N. Dosimetric analysis of the carousel setup for the exposure of rats at 1.62 GHz. Bioelectromagnetics. 2004;25(1):16–26.

    Article  PubMed  Google Scholar 

  64. Weiland T. A discretization model for the solution of Maxwell's equations for six-component fields. Archiv Elektronik und Uebertragungstechnik. 1977;31:116–20.

    Google Scholar 

  65. Razi-Kazemi AA, Hajian M. Probabilistic assessment of ground potential rise using finite integration technique. IEEE Trans Power Deliv. 2018;33(5):2452–61.

    Article  Google Scholar 

  66. Gabriel S, Lau R, Gabriel C. The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz. Phys Med Biol. 1996;41(11):2251.

    Article  CAS  PubMed  Google Scholar 

  67. Abdilla L, Sammut C, Mangion LZ. Dielectric properties of muscle and liver from 500 MHz–40 GHz. Electromagn Biol Med. 2013;32(2):244–52.

    Article  PubMed  Google Scholar 

  68. Celik-Ozenci C, Tasatargil A, Tekcan M, Sati L, Gungor E, Isbir M, Demir R. Effects of abamectin exposure on male fertility in rats: potential role of oxidative stress-mediated poly (ADP-ribose) polymerase (PARP) activation. Regul Toxicol Pharmacol. 2011;61(3):310–7.

    Article  CAS  PubMed  Google Scholar 

  69. Leblond C, Clermont Y. Definition of the stages of the cycle of the seminiferous epithelium in the rat. Ann N Y Acad Sci. 1952;55(4):548–73.

    Article  CAS  PubMed  Google Scholar 

  70. Creasy DM. Evaluation of testicular toxicity in safety evaluation studies: the appropriate use of spermatogenic staging. Toxicol Pathol. 1997;25(2):119–31.

    Article  CAS  PubMed  Google Scholar 

  71. Hess RA, Linder RE, Strader LF, Perreault SD. Acute effects and long-term sequelae of 1, 3-dinitrobenzene on male reproduction in the rat ii. quantitative and qualitative histopathology of the testis. J Androl. 1988;9(5):327–42.

    Article  CAS  PubMed  Google Scholar 

  72. Dasdag S, Taş M, Akdag MZ, Yegin K. Effect of long-term exposure of 2.4 GHz radiofrequency radiation emitted from Wi-Fi equipment on testes functions. Electromagn Biol Med. 2015;34(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  73. Gökçek-Saraç Ç, Er H, Kencebay Manas C, Kantar Gok D, Özen Ş, Derin N. Effects of acute and chronic exposure to both 900 MHz and 2100 MHz electromagnetic radiation on glutamate receptor signaling pathway. Int J Radiat Biol. 2017;93(9):980–9.

    Article  CAS  PubMed  Google Scholar 

  74. Soffritti M, Giuliani L. The carcinogenic potential of non-ionizing radiations: the cases of S-50 Hz MF and 1.8 GHz GSM radiofrequency radiation. Basic Clin Pharmacol Toxicol. 2019;125:58–69.

    Article  CAS  PubMed  Google Scholar 

  75. Gautam R, Singh KV, Nirala J, Murmu NN, Meena R, Rajamani P. Oxidative stress-mediated alterations on sperm parameters in male Wistar rats exposed to 3G mobile phone radiation. Andrologia. 2019;51(3):e13201.

    Article  CAS  PubMed  Google Scholar 

  76. Kuzay D, Ozer C, Sirav B, Canseven A, Seyhan N. Oxidative effects of extremely low frequency magnetic field and radio frequency radiation on testes tissues of diabetic and healthy rats. Bratisl Lek Listy. 2017;118(5):278–82.

    CAS  PubMed  Google Scholar 

  77. Lin Y-Y, Wu T, Liu J-Y, Gao P, Li K-C, Guo Q-Y, Yuan M, Lang H-Y, Zeng L-H, Guo G-Z. 1950MHz Radio frequency electromagnetic radiation inhibits testosterone secretion of mouse Leydig cells. Int J Environ Res Public Health. 2018;15(1):17.

    Article  CAS  Google Scholar 

  78. Kumar G, McIntosh RL, Anderson V, McKenzie RJ, Wood AW. A genotoxic analysis of the hematopoietic system after mobile phone type radiation exposure in rats. Int J Radiat Biol. 2015;91(8):664–72.

    Article  CAS  PubMed  Google Scholar 

  79. Xu F, Bai Q, Zhou K, Ma L, Duan J, Zhuang F, Xie C, Li W, Zou P, Zhu C. Age-dependent acute interference with stem and progenitor cell proliferation in the hippocampus after exposure to 1800 MHz electromagnetic radiation. Electromagn Biol Med. 2017;36(2):158–66.

    Article  CAS  PubMed  Google Scholar 

  80. Jiménez-García MN, Arellanes-Robledo J, Aparicio-Bautista DI, Rodríguez-Segura MÁ, Villa-Treviño S, Godina-Nava JJ. Anti-proliferative effect of extremely low frequency electromagnetic field on preneoplastic lesions formation in the rat liver. BMC Cancer. 2010;10(1):1–12.

    Article  CAS  Google Scholar 

  81. Guo L, Lin J-J, Xue Y-Z, An G-Z, Zhang J-P, Zhang K-Y, He W, Wang H, Li W, Ding G-R. Effects of 220 MHz pulsed modulated radiofrequency field on the sperm quality in rats. Int J Environ Res Public Health. 2019;16(7):1286.

    Article  CAS  PubMed Central  Google Scholar 

  82. Zhao H, Yenari MA, Cheng D, Sapolsky RM, Steinberg GK. Bcl-2 overexpression protects against neuron loss within the ischemic margin following experimental stroke and inhibits cytochrome c translocation and caspase-3 activity. J Neurochem. 2003;85(4):1026–36.

    Article  CAS  PubMed  Google Scholar 

  83. Hou J, Wang S, Chen Shang Y, Zhong Chong Z, Maiese K. Erythropoietin employs cell longevity pathways of SIRT1 to foster endothelial vascular integrity during oxidant stress. Curr Neurovasc Res. 2011;8(3):220–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Koh P-O. Nicotinamide attenuates the ischemic brain injury-induced decrease of Akt activation and Bad phosphorylation. Neurosci Lett. 2011;498(2):105–9.

    Article  CAS  PubMed  Google Scholar 

  85. Lee HJ, Pack JK, Kim TH, Kim N, Choi SY, Lee JS, Kim SH, Lee YS. The lack of histological changes of CDMA cellular phone-based radio frequency on rat testis. Bioelectromagnetics. 2010;31(7):528–34.

    Article  CAS  PubMed  Google Scholar 

  86. Saygin M, Caliskan S, Karahan N, Koyu A, Gumral N, Uguz A. Testicular apoptosis and histopathological changes induced by a 2.45 GHz electromagnetic field. Toxicol Ind Health. 2011;27(5):455–63.

    Article  CAS  PubMed  Google Scholar 

  87. Yilmaz F, Dasdag S, Akdag MZ, Kilinc N. Whole-body exposure of radiation emitted from 900 MHz mobile phones does not seem to affect the levels of anti-apoptotic bcl-2 protein. Electromagn Biol Med. 2008;27(1):65–72.

    Article  CAS  PubMed  Google Scholar 

  88. Ma H, Cao X, Ma X, Chen J, Chen J, Yang H, Liu Y. Protective effect of Liuweidihuang pills against cellphone electromagnetic radiation-induced histomorphological abnormality, oxidative injury, and cell apoptosis in rat testes. Zhonghua nan ke xue=Natl J Androl. 2015;21(8):737–41.

    Google Scholar 

  89. Duan W, Liu C, Wu H, Chen C, Zhang T, Gao P, Luo X, Yu Z, Zhou Z. Effects of exposure to extremely low frequency magnetic fields on spermatogenesis in adult rats. Bioelectromagnetics. 2014;35(1):58–69.

    Article  PubMed  Google Scholar 

  90. Ma H, Ma Z, Wang G, Song C, Ma X, Cao X, Zhang G. Impacts of exposure to 900 MHz mobile phone radiation on liver function in rats. Zhongguo Ying Yong Sheng li xue za zhi= Zhongguo Yingyong Shenglixue Zazhi= Chinese. J Appl Physiol. 2015;31(6):567–71.

    Google Scholar 

  91. Tobiume K, Matsuzawa A, Takahashi T, Nishitoh H, Ki M, Takeda K, Minowa O, Miyazono K, Noda T, Ichijo H. ASK1 is required for sustained activations of JNK/p38 MAP kinases and apoptosis. EMBO Rep. 2001;2(3):222–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Gabryel B, Liber S. Metformin limits apoptosis in primary rat cortical astrocytes subjected to oxygen and glucose deprivation. Folia Neuropathol. 2018;56:328–36.

    Article  PubMed  Google Scholar 

  93. Wu H, Wang D, Meng Y, Ning H, Liu X, Xie Y, Cui L, Wang S, Xu X, Peng R. Activation of TLR signalling regulates microwave radiation-mediated impairment of spermatogenesis in rat testis. Andrologia. 2018;50(1):e12828.

    Article  CAS  Google Scholar 

  94. Guan Q-H, Pei D-S, Zhang Q-G, Hao Z-B, Xu T-L, Zhang G-Y. The neuroprotective action of SP600125, a new inhibitor of JNK, on transient brain ischemia/reperfusion-induced neuronal death in rat hippocampal CA1 via nuclear and non-nuclear pathways. Brain Res. 2005;1035(1):51–9.

    Article  CAS  PubMed  Google Scholar 

  95. Jeong H-S, Choi H-Y, Choi T-W, Kim B-W, Kim J-H, Lee E-R, Cho S-G. Differential regulation of the antiapoptotic action of B-cell lymphoma 2 (Bcl-2) and B-cell lymphoma extra long (Bcl-xL) by c-Jun N-terminal protein kinase (JNK) 1-involved pathway in neuroglioma cells. Biol Pharm Bull. 2008;31(9):1686–90.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a research grant from Akdeniz University, The Scientific Research Projects Coordination Unit (TSA-2018-3739).

Funding

This work was supported by a research grant from Akdeniz University, The Scientific Research Projects Coordination Unit (TSA-2018-3739).

Author information

Authors and Affiliations

Authors

Contributions

LS designed the experiment and interpreted the data; HE, BS, GGT, SO, and LS performed the experiments, collected the data, and analyzed the results; HE and LS wrote the manuscript. All authors edited the manuscript and have given approval for the publication of the present version of this manuscript.

Corresponding author

Correspondence to Leyla Sati.

Ethics declarations

Ethics Approval

All the experimental animal protocols for this study were approved by the Akdeniz University Local Ethics Committee for Animal Experiments (protocol number: 758/2018.10.07).

Consent to Participate

Not applicable.

Consent for Publication

All authors consent to the publication of the manuscript.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Er, H., Tas, G.G., Soygur, B. et al. Acute and Chronic Exposure to 900 MHz Radio Frequency Radiation Activates p38/JNK-mediated MAPK Pathway in Rat Testis. Reprod. Sci. 29, 1471–1485 (2022). https://doi.org/10.1007/s43032-022-00844-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-022-00844-y

Keywords

Navigation