Skip to main content
Log in

Increased Expression of Fibroblast Activation Protein is Associated with Autophagy Dysregulation and Oxidative Stress in Obese Women with Uterine Fibroids

  • Fibroid: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Uterine fibroids (UF) represent an immense health burden throughout the world. Obesity is considered one of the risk factors for UF development; however, the underlying mechanisms remain largely unexplored. We investigated the effect of obesity on fibroblast activation and its association with inflammation, autophagy dysfunction, and oxidative stress in UF patients. Thirty-five pre-menopausal UF patients were included in this study and classified into non-obese group (BM1 ≤ 30 kg/m2, n = 15) and obese group (BMI > 30 kg/m2, n = 20). Tissue samples were collected from fibroids and adjacent normal myometrium. Our results showed increased expression of fibroblast activation protein (FAP) together with markers of autophagy, inflammation, and oxidative stress in UF patients, which were all more markedly upregulated in obese compared to non-obese patients. In addition, BMI was significantly positive correlated with FAP and autophagy markers. In conclusion, the results of the present study suggest that obesity-associated autophagy dysregulation together with increased FAP expression may increase the risk of UFs in obese women.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

All related data and materials are available from the corresponding author upon request.

Code Availability

Non applicable.

References

  1. De La Cruz MSD, Buchanan EM. Uterine fibroids: diagnosis and treatment. Am Fam Physician. 2017;95(2):100–7.

    Google Scholar 

  2. Giuliani E, As-Sanie S, Marsh EE. Epidemiology and management of uterine fibroids. Int J Gynecol Obstet. 2020;149(1):3–9.

    Google Scholar 

  3. Marsh EE, Al-Hendy A, Kappus D, Galitsky A, Stewart EA, Kerolous M. Burden, Prevalence, and treatment of uterine fibroids: a survey of US women. J Women’s Health. 2018;27(11):1359–67.

    Google Scholar 

  4. Fortin C, Flyckt R, Falcone T. Alternatives to hysterectomy: the burden of fibroids and the quality of life. Best Pract Res Clin Obstet Gynaecol. 2018;46:31–42.

    PubMed  Google Scholar 

  5. Zhao R, Wang X, Zou L, Li G, Chen Y, Li C, et al. Adverse obstetric outcomes in pregnant women with uterine fibroids in China: a multicenter survey involving 112,403 deliveries. Plos One. 2017;12(11):e0187821.

    PubMed  PubMed Central  Google Scholar 

  6. Garg D, Segars JH. Treatment modalities for fibroids, indications, risks, and benefits. In: Moawad N, editor. Uterine Fibroids. Cham: Springer; 2018. p. 87–106.

    Google Scholar 

  7. Pandey S, Bhattacharya S. Impact of obesity on gynecology. Womens Health. 2010;6:107–17.

    Google Scholar 

  8. Okolo S. Incidence, aetiology and epidemiology of uterine fibroids. Best Pract Res Clin Obstet Gynaecol. 2008;22(4):571–88.

    PubMed  Google Scholar 

  9. Templeman C, Marshall SF, Clarke CA, DeLellis HK, Largent J, Neuhausen S, et al. Risk factors for surgically removed fibroids in a large cohort of teachers. Fertil Steril. 2009;92(4):1436–46.

    PubMed  Google Scholar 

  10. Wise LA, Laughlin-Tommaso SK. Epidemiology of uterine fibroids–from menarche to menopause. Clin Obstet Gynecol. 2016;59(1):2–24.

    PubMed  PubMed Central  Google Scholar 

  11. Soave I, Marci R. From obesity to uterine fibroids: an intricate network. Curr Med Res Opin. 2018;34(11):1877–9.

    Google Scholar 

  12. Ciavattini A, Delli Carpini G, Moriconi L, Clemente N, Orici F, Boschi AC, et al. The association between ultrasound-estimated visceral fat deposition and uterine fibroids: an observational study. Gynecol Endocrinol. 2017;33(8):634–7.

    CAS  PubMed  Google Scholar 

  13. Del Bello B, Marcolongo P, Ciarmela P, Sorbi F, Petraglia F, Luisi S, et al. Autophagy up-regulation by ulipristal acetate as a novel target mechanism in the treatment of uterine leiomyoma: an in vitro study. Fertil Steril. 2019;112(6):1150–9.

    PubMed  Google Scholar 

  14. Guo J, Zheng L, Chen L, Luo N, Yang W, Qu X, et al. Lipopolysaccharide activated TLR4/NF-κB signaling pathway of fibroblasts from uterine fibroids. Int J Clin Exp Pathol. 2015;8(9):10014–25.

    PubMed  PubMed Central  Google Scholar 

  15. Lin W, Ma S, Wang L. Study on the correlation of MLCK and FAP expression with uterine fibroid cell proliferation and invasion. J Hainan Med Univ. 2017;23(12):79–82.

    Google Scholar 

  16. Errarte P, Guarch R, Pulido R, Blanco L, Nunes-Xavier CE, Beitia M, et al. The expression of fibroblast activation protein in clear cell renal cell carcinomas is associated with synchronous lymph node metastases. Plos One. 2016;11(12):e0169105.

    PubMed  PubMed Central  Google Scholar 

  17. Gao L-M, Wang F, Zheng Y, Fu Z-Z, Zheng L, Chen L-L. Roles of fibroblast activation protein and hepatocyte growth factor expressions in angiogenesis and metastasis of gastric cancer. Pathol Oncol Res. 2019;25(1):369–76.

    CAS  PubMed  Google Scholar 

  18. Zhang HE, Hamson EJ, Koczorowska MM, Tholen S, Chowdhury S, Bailey CG, et al. Identification of novel natural substrates of fibroblast activation protein-alpha by differential degradomics and proteomics. Mol Cell Proteom. 2019;18(1):65–85.

    CAS  Google Scholar 

  19. Luo N, Guan Q, Zheng L, Qu X, Dai H, Cheng Z. Estrogen-mediated activation of fibroblasts and its effects on the fibroid cell proliferation. Transl Res. 2014;163(3):232–41.

    CAS  PubMed  Google Scholar 

  20. Hewitt G, Korolchuk VI. Repair, reuse, recycle: the expanding role of autophagy in genome maintenance. Trends Cell Biol. 2017;27(5):340–51.

    CAS  PubMed  Google Scholar 

  21. El Andaloussi A, Habib S, Soylemes G, Laknaur A, Elhusseini H, Al-Hendy A, et al. Defective expression of ATG4D abrogates autophagy and promotes growth in human uterine fibroids. Cell Death Discov. 2017;3(1):1–9.

    Google Scholar 

  22. Namkoong S, Cho CS, Semple I, Lee JH. Autophagy dysregulation and obesity-associated pathologies. Mol Cells. 2018;41(1):3–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Zhang Y, Sowers JR, Ren J. Targeting autophagy in obesity: from pathophysiology to management. Nat Rev Endocrinol. 2018;14(6):356–76.

    CAS  PubMed  Google Scholar 

  24. Castañeda D, Gabani M, Choi S-K, Nguyen QM, Chen C, Mapara A, et al. Targeting autophagy in obesity-associated heart disease. Obesity. 2019;27(7):1050–8.

    PubMed  Google Scholar 

  25. Filomeni G, De Zio D, Cecconi F. Oxidative stress and autophagy: the clash between damage and metabolic needs. Cell Death Differ. 2015;22(3):377–88.

    CAS  PubMed  Google Scholar 

  26. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.

    CAS  PubMed  Google Scholar 

  27. Bancroft JD, Gamble M. Theory and practice of histological techniques. 6th ed. China: Churchill Livingstone, Elsevier; 2008.

    Google Scholar 

  28. Glauert AM, Lewis PR. Biological specimen preparation for transmission electron microscopy. In: Glauert AM, editor. Practical methods in electron microscopy. London: Portland Press; 1998.

    Google Scholar 

  29. Blomberg R, Beiting DP, Wabitsch M, Puré E. Fibroblast activation protein restrains adipogenic differentiation and regulates matrix-mediated mTOR signaling. Matrix Biol. 2019;83:60–76.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Qin H, Lin Z, Vásquez E, Luan X, Guo F, Xu L. Association between obesity and the risk of uterine fibroids: a systematic review and meta-analysis. J Epidemiol Community Health. 2020;75(2):197–204.

    PubMed  Google Scholar 

  31. Çinar M, Tokmak A, Güzel AI, Aksoy RT, Özer İ, Yilmaz N, et al. Association of clinical outcomes and complications with obesity in patients who have undergone abdominal myomectomy. J Chin Med Assoc. 2016;79(8):435–9.

    PubMed  Google Scholar 

  32. Marshall LM, Spiegelman D, Manson JE, Goldman MB, Barbieri RL, Stampfer MJ, et al. Risk of uterine leiomyomata among premenopausal women in relation to body size and cigarette smoking. J Epidemiol. 1998;9(5):511–7.

    CAS  Google Scholar 

  33. Sato F, Nishi M, Kudo R, Miyake H. Body fat distribution and uterine leiomyomas. J Epidemiol. 1998;8(3):176–80.

    CAS  PubMed  Google Scholar 

  34. Poret JM, Souza-Smith F, Marcell SJ, Gaudet DA, Tzeng TH, Braymer HD, et al. High fat diet consumption differentially affects adipose tissue inflammation and adipocyte size in obesity-prone and obesity-resistant rats. Int J Obes. 2018;42(3):535–41.

    CAS  Google Scholar 

  35. Protic O, Toti P, Islam MS, Occhini R, Giannubilo SR, Catherino WH, et al. Possible involvement of inflammatory/reparative processes in the development of uterine fibroids. Cell Tissue Res. 2016;364(2):415–27.

    CAS  PubMed  Google Scholar 

  36. Winkler G, Kiss S, Keszthelyi L, Sápi Z, Ory I, Salamon F, et al. Expression of tumor necrosis factor (TNF)-a protein in the subcutaneous and visceral adipose tissue in correlation with adipocyte cell volume, serum TNF-a, soluble serum TNF-receptor-2 concentrations and C-peptide level. Eur J Endocrinol. 2003;149(2):129–35.

    CAS  PubMed  Google Scholar 

  37. Petrus P, Mejhert N, Corrales P, Lecoutre S, Li Q, Maldonado E, et al. Transforming growth factor-β3 regulates adipocyte number in subcutaneous white adipose tissue. Cell Rep. 2018;25(3):551–60.

    CAS  PubMed  Google Scholar 

  38. Ihara S, Hirata Y, Koike K. TGF-β in inflammatory bowel disease: a key regulator of immune cells, epithelium, and the intestinal microbiota. J Gastroenterol. 2017;52(7):777–87.

    CAS  PubMed  Google Scholar 

  39. Pervin S, Nyah W, Reddy ST, Singh R. Novel aspects of follistatin/transforming growth factor-β (TGF-β) signaling in adipose tissue metabolism: implications in metabolic health. In: Szablewski L, editor. Adipose Tissue-An Update. London: IntechOpen; 2019. p. 1–21. https://doi.org/10.5772/intechopen.88294.

    Chapter  Google Scholar 

  40. Arici A, Sozen I. Transforming growth factor-β3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006–11.

    CAS  PubMed  Google Scholar 

  41. Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-β3 (TGFβ3) and altered responses to the antiproliferative effects of TGFβ. J Clin Endocrinol Metab. 2001;86(2):913–20.

    CAS  PubMed  Google Scholar 

  42. Plewka A, Madej P, Plewka D, Kowalczyk A, Miskiewicz A, Wittek P, et al. Immunohistochemical localization of selected pro-inflammatory factors in uterine myomas and myometrium in women of various ages. Folia Histochem Cytobiol. 2013;51(1):73–83.

    CAS  PubMed  Google Scholar 

  43. Tal R, Segars JH. The role of angiogenic factors in fibroid pathogenesis: potential implications for future therapy. Hum Reprod Update. 2014;20(2):194–216.

    CAS  PubMed  Google Scholar 

  44. Fletcher N, Saed M, Abu-Soud H, Al-Hendy A, Diamond MP, Saed G. Uterine fibroids are characterized by an impaired antioxidant cellular system: potential role of hypoxia in the pathophysiology of uterine fibroids. J Assist Reprod Genet. 2013;30(7):969–74.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. Chiou J-F, Hu M-L. Elevated lipid peroxidation and disturbed antioxidant enzyme activities in plasma and erythrocytes of patients with uterine cervicitis and myoma. Clin Biochem. 1999;32(3):189–92.

    CAS  PubMed  Google Scholar 

  46. Pejic S, Kasapovic J, Todorovic A, Stojiljkovic V, Pajovic SB. Lipid peroxidation and antioxidant status in blood of patients with uterine myoma, endometrial polypus, hyperplastic and malignant endometrium. Biol Res. 2006;39(4):619–29.

    CAS  PubMed  Google Scholar 

  47. Ellulu MS, Patimah I, Khaza’ai H, Rahmat A, Abed Y. Obesity and inflammation: the linking mechanism and the complications. Arch Med Sci. 2017;13(4):851–63.

    CAS  PubMed  Google Scholar 

  48. Islam MS, Ciavattini A, Petraglia F, Castellucci M, Ciarmela P. Extracellular matrix in uterine leiomyoma pathogenesis: a potential target for future therapeutics. Hum Reprod Update. 2018;24(1):59–85.

    CAS  PubMed  Google Scholar 

  49. Bao H, Sin TK, Zhang G. Activin A induces leiomyoma cell proliferation, extracellular matrix (ECM) accumulation and myofibroblastic transformation of myometrial cells via p38 MAPK. Biochem Biophys Res Commun. 2018;504(2):447–53.

    CAS  PubMed  Google Scholar 

  50. Ciebiera M, Włodarczyk M, Zgliczyńska M, Łukaszuk K, Męczekalski B, Kobierzycki C, et al. The role of tumor necrosis factor α in the biology of uterine fibroids and the related symptoms. Int J Mol Sci. 2018;19(12):3869–95.

    PubMed Central  Google Scholar 

  51. Borahay MA, Asoglu MR, Mas A, Adam S, Kilic GS, Al-Hendy A. Estrogen receptors and signaling in fibroids: role in pathobiology and therapeutic implications. Reprod Sci. 2017;24(9):1235–44.

    CAS  PubMed  Google Scholar 

  52. Le Goff C, Cormier-Daire V. From tall to short: the role of TGFβ signaling in growth and its disorders. Am J Med Genet. 2012;160(3):145–53.

    Google Scholar 

  53. Brokopp CE, Schoenauer R, Richards P, Bauer S, Lohmann C, Emmert MY, et al. Fibroblast activation protein is induced by inflammation and degrades type I collagen in thin-cap fibroatheromata. Eur Heart J. 2011;32(21):2713–22.

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Joseph DS, Malik M, Nurudeen S, Catherino WH. Myometrial cells undergo fibrotic transformation under the influence of transforming growth factor β-3. Fertil Steril. 2010;93(5):1500–8.

    CAS  PubMed  Google Scholar 

  55. Kota A, Deshpande DA, Mehra Haghi BO, Sharma P. Autophagy and airway fibrosis: is there a link? F1000Res. 2017;6:409.

    PubMed  Google Scholar 

  56. Donnez J, Tomaszewski J, Vázquez F, Bouchard P, Lemieszczuk B, Baró F, et al. Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med. 2012;366:421–32.

    CAS  PubMed  Google Scholar 

  57. Dikic I, Elazar Z. Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol. 2018;19(6):349–64.

    CAS  PubMed  Google Scholar 

  58. Komatsu M, Kageyama S, Ichimura Y. p62/SQSTM1/A170: physiology and pathology. Pharmacol Res. 2012;66(6):457–62.

    CAS  PubMed  Google Scholar 

  59. Herder C, Schneitler S, Rathmann W, Haastert B, Schneitler H, Winkler H, et al. Low-grade inflammation, obesity, and insulin resistance in adolescents. J Clin Endocrinol Metab. 2007;92(12):4569–74.

    CAS  PubMed  Google Scholar 

  60. Tripathi S, Srivastava S, Tripathi YB. Obesity and its complications: role of autophagy. Int J Pharm Sci Res. 2018;9(8):3100–13.

    CAS  Google Scholar 

  61. Ju L, Han J, Zhang X, Deng Y, Yan H, Wang C, et al. Obesity-associated inflammation triggers an autophagy–lysosomal response in adipocytes and causes degradation of perilipin 1. Cell Death Dis. 2019;10(2):1–16.

    CAS  Google Scholar 

  62. Najafi S, Abo-Ali EM, Dukhande VV. Methods for studying TNFα-induced autophagy. Methods Mol Biol. 2020;2108:131–46.

    CAS  PubMed  Google Scholar 

  63. Tang Z, Hu B, Zang F, Wang J, Zhang X, Chen H. Nrf2 drives oxidative stress-induced autophagy in nucleus pulposus cells via a Keap1/Nrf2/p62 feedback loop to protect intervertebral disc from degeneration. Cell Death Dis. 2019;10(7):1–12.

    Google Scholar 

  64. Costa A, Scholer-Dahirel A, Mechta-Grigoriou F. The role of reactive oxygen species and metabolism on cancer cells and their microenvironment. Semin Cancer Biol. 2014;25:23–32.

    CAS  PubMed  Google Scholar 

  65. Jain M, Rivera S, Monclus EA, Synenki L, Zirk A, Eisenbart J, et al. Mitochondrial reactive oxygen species regulate transforming growth factor-β signaling. J Biol Chem. 2013;288(2):770–7.

    CAS  PubMed  Google Scholar 

  66. Sharma LK, Tiwari M, Rai NK, Bai Y. Mitophagy activation repairs Leber’s hereditary optic neuropathy-associated mitochondrial dysfunction and improves cell survival. Hum Mol Genet. 2019;28(3):422–33.

    CAS  PubMed  Google Scholar 

  67. Dunshee DR, Bainbridge TW, Kljavin NM, Zavala-Solorio J, Schroeder AC, Chan R, et al. Fibroblast activation protein cleaves and inactivates fibroblast growth factor 21. J Biol Chem. 2016;291(11):5986–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Zhen EY, Jin Z, Ackermann BL, Thomas MK, Gutierrez JA. Circulating FGF21 proteolytic processing mediated by fibroblast activation protein. Biochem J. 2016;473(5):605–14.

    CAS  PubMed  Google Scholar 

  69. Wu Y, Shi T, Wang J, He R. Talabostat alleviates obesity and associated metabolic dysfunction via suppression of macrophage-driven adipose inflammation. Obesity. 2021;29(2):327–36.

    CAS  PubMed  Google Scholar 

Download references

Funding

This research received a grant from the Assiut Medical School Grant Office. Grant no 2018-02-27-006-R1.

Author information

Authors and Affiliations

Authors

Contributions

Eman Radwan and Nashwa Maghraby: conceptualization, methodology, software, data curation, investigation, formal analysis, writing, visualization, and supervision; Nashwa A.M. Mostafa: methodology, investigation, formal analysis, visualization; Heba E.M El-Deek: methodology, investigation, formal analysis; Amira El-Noweihi and Nagla T. El-Melegy: conceptualization, visualization writing–reviewing, and editing; Ahmed M. Abbas: data curation, investigation, and formal analysis.

Corresponding author

Correspondence to Eman Radwan.

Ethics declarations

Ethics Approval

All study procedures were approved by the Medical Ethics Committee, Faculty of Medicine, and Assiut University (IRB no: 17200173).

Consent to Participate

A written informed consent was obtained from each participant.

Consent for Publication

Participants have consented to the submission of data.

Conflict of Interest

The authors declare no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maghraby, N., El Noweihi, A.M., El-Melegy, N.T. et al. Increased Expression of Fibroblast Activation Protein is Associated with Autophagy Dysregulation and Oxidative Stress in Obese Women with Uterine Fibroids. Reprod. Sci. 29, 448–459 (2022). https://doi.org/10.1007/s43032-021-00810-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00810-0

Keywords

Navigation