Skip to main content

Advertisement

Log in

Diet Supplemented with Chrysophyllum albidum G. Don (Sapotaceae) Fruit Pulp Improves Reproductive Function in Hypertensive Male Rats

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Hypertension has been implicated as a risk factor of reproductive disorders. High blood pressure may trigger impaired sperm quality and biomarkers of reproductive disorders. This study aims to investigate the effect of diet supplemented with Chrysophyllum albidum fruit pulp (FP) on sperm parameters, reproductive hormones, and antioxidant markers in testes and epididymis of hypertensive rats. Male Wistar rats were divided into seven groups (n = 10): normotensive control rats [NC], cyclosporine (25 mg/kg)-induced hypertensive rats [Hypert], hypertensive rats treated with captopril (10 mg/kg/day) [Hypert + Capt], hypertensive [Hypert + 2%FP and Hypert + 4%FP], and normotensive [2%FP and 4%FP] rats treated with 2% and 4% of diet supplemented with African star apple fruit’s pulp [FP]. Hemodynamic parameters (arterial pressure, diastolic, and systolic pressure), sperm count, sperm motility, reproductive hormones, reactive oxygen species, and malondialdehyde levels were assessed. Diet supplemented with FP fed to hypertensive rats reduced mean arterial pressure, diastolic and systolic blood pressure, and heart rate. Furthermore, FP improved sperm quality in hypertensive rats by increasing sperm count, sperm motility with a concomitant reduction in sperm abnormality. FP also increased 3β and 17β-hydroxysteroid hydrogenase (3β-HSD and 17β –HSD) activities, as well as testosterone, luteinizing hormone, and follicle-stimulating hormone levels. Besides, FP triggered a significant increase in 3β-HSD, 17β –HSD, and STAR expression in rats’ testicular tissues. Diet supplemented with FP also reduced ROS and malondialdehyde levels and triggered an increase in thiol levels, catalase, and glutathione-S-transferase activities. This study revealed that FP supplemented diet improved sexual function in cyclosporine-induced hypertensive rats by reducing blood pressure and modulation of sperm parameters, steroidogenic enzymes, and reproductive hormones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kumar N, Singh AK. Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci. 2015;8:191–6. https://doi.org/10.4103/0974-1208.170370.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Harris ID, Fronczak C, Roth L, et al. Fertility and the aging male. Rev Urol. 2011;13:e184-190.

    PubMed  PubMed Central  Google Scholar 

  3. Collodel G, Ferretti F, Masini M, et al. Influence of age on sperm characteristics evaluated by light and electron microscopies. Scientific Reports 2021; 11. https://doi.org/10.1038/s41598-021-84051-w.

  4. Lagana AS, Vitale SG, Iaconianni P, et al. Male infertility during antihypertensive therapy: are we addressing correctly the problem? Int J Fertil Steril 2016; 10: 267–269. https://doi.org/10.22074/ijfs.2016.4633.

  5. Kyrou I, Randeva HS, Tsigos C, et al. Clinical problems caused by obesity. In: Feingold KR, Anawalt B, Boyce A, et al. (eds) Endotext. South Dartmouth (MA), 2000.

  6. Glazer CH, Bonde JP, Giwercman A, et al. Risk of diabetes according to male factor infertility: a register-based cohort study. Hum Reprod. 2017;32:1474–81. https://doi.org/10.1093/humrep/dex097.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Kasturi SS, Tannir J, Brannigan RE. The metabolic syndrome and male infertility. J Androl. 2008;29:251–9. https://doi.org/10.2164/jandrol.107.003731.

    Article  CAS  PubMed  Google Scholar 

  8. Nilsson PM, Viigimaa M, Giwercman A, et al. Hypertension and reproduction. Curr Hypertens Rep. 2020;22:29. https://doi.org/10.1007/s11906-020-01036-2.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Bechara GR, de Souza DB, Simoes M, et al. Testicular morphology and spermatozoid parameters in spontaneously hypertensive rats treated with enalapril. J Urol. 2015;194:1498–503. https://doi.org/10.1016/j.juro.2015.06.073.

    Article  CAS  PubMed  Google Scholar 

  10. Guo D, Li S, Behr B, et al. Hypertension and male fertility. World J Mens Health. 2017;35:59–64. https://doi.org/10.5534/wjmh.2017.35.2.59.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Morales JM. Influence of the new immunosuppressive combinations on arterial hypertension after renal transplantation. Kidney Int Suppl 2002: S81–87. https://doi.org/10.1046/j.1523-1755.62.s82.16.x.

  12. Miller LW. Cardiovascular toxicities of immunosuppressive agents. Am J Transplant. 2002;2:807–18. https://doi.org/10.1034/j.1600-6143.2002.20902.x.

    Article  CAS  PubMed  Google Scholar 

  13. Okeahialam BN, Amadi K, Ameh AS. Effect of lisnopril, an angiotensin converting enzyme (ACE) inhibitor on spermatogenesis in rats. Arch Androl. 2006;52:209–13. https://doi.org/10.1080/01485010500398012.

    Article  CAS  PubMed  Google Scholar 

  14. Mbah AU, Ndukwu GO, Ghasi SI, et al. Low-dose lisinopril in normotensive men with idiopathic oligospermia and infertility: a 5-year randomized, controlled, crossover pilot study. Clin Pharmacol Ther. 2012;91:582–9. https://doi.org/10.1038/clpt.2011.265.

    Article  CAS  PubMed  Google Scholar 

  15. Adefegha SA, Oboh G, Olasehinde TA, et al. Dietary supplementation with Ethiopian pepper ( Xylopia aethiopica) modulates angiotensin-I converting enzyme activity, antioxidant status and extenuates hypercholesterolemia in high cholesterol fed Wistar rats. PharmaNutrition. 2018;6:9–16. https://doi.org/10.1016/j.phanu.2017.11.001.

    Article  Google Scholar 

  16. Adewoyin M, Ibrahim M, Roszaman R, et al. Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases. 2017;5:9. https://doi.org/10.3390/diseases5010009.

    Article  CAS  PubMed Central  Google Scholar 

  17. Arueya GL, Ugwu GF. Development and evaluation of African star apple (Chrysophyllum albidum) based food supplement and its potential in combating oxidative stress. Journal of Functional Foods. 2017;33:376–85. https://doi.org/10.1016/j.jff.2017.04.004.

    Article  CAS  Google Scholar 

  18. Idowu TO, Ogundaini AO, Adesanya SA, et al. Isolation and characterization of chemical constituents from chrysophyllum Albidum G. Don-Holl. Stem-Bark Extracts and Their Antioxidant and Antibacterial Properties. Afr J Tradit Complement Altern Med 2016; 13: 182-189. https://doi.org/10.21010/ajtcam.v13i5.24.

  19. Oboh G, Adebayo AA, Ejakpovi II, et al. Phenolic profiling and in vitro antioxidant, anticholinesterase, and antimonoamine oxidase properties of aqueous extract of African star apple (Chrysophyllum albidum ) fruit parts. Journal of Food Biochemistry. 2018;42:1–10.

    Google Scholar 

  20. Adebayo AH, Abolaji AO, Kela R, et al. Antioxidant activities of the leaves of Chrysophyllum albidum G. Pak J Pharm Sci. 2011;24:545–51.

    CAS  PubMed  Google Scholar 

  21. Akomolafe SF, Odeniyi IA, Oyetayo FL, et al. African star apple fruit pulp-supplemented diet modulates fertility-related biomolecules in the testis and epididymis of high-fat diet/streptozotocin-induced diabetic rats. J Food Biochem. 2019;43: e12969. https://doi.org/10.1111/jfbc.12969.

    Article  CAS  PubMed  Google Scholar 

  22. Oboh G, Oyeleye SI, Akintemi OA, et al. Moringa oleifera supplemented diet modulates nootropic-related biomolecules in the brain of STZ-induced diabetic rats treated with acarbose. Metab Brain Dis. 2018;33:457–66. https://doi.org/10.1007/s11011-018-0198-2.

    Article  CAS  PubMed  Google Scholar 

  23. Agunloye OM, Oboh G, Ademiluyi AO, et al. Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats. Biomed Pharmacother. 2019;109:450–8. https://doi.org/10.1016/j.biopha.2018.10.044.

    Article  CAS  PubMed  Google Scholar 

  24. Esteva-Font C, Ars E, Guillen-Gomez E, et al. Ciclosporin-induced hypertension is associated with increased sodium transporter of the loop of Henle (NKCC2). Nephrol Dial Transplant. 2007;22:2810–6. https://doi.org/10.1093/ndt/gfm390.

    Article  CAS  PubMed  Google Scholar 

  25. Akomolafe SF, Oboh G, Akindahunsi AA, et al. Ethanol-induced male infertility: Effects of aqueous leaf extract ofTetracarpidium conophorum. Andrologia. 2017;49: e12759. https://doi.org/10.1111/and.12759.

    Article  CAS  Google Scholar 

  26. Jarabak J, Adams JA, Williams-Ashman HG, et al. Purification of a 17beta-hydroxysteroid dehydrogenase of human placenta and studies on its transhydrogenase function. J Biol Chem. 1962;237:345–57.

    Article  CAS  PubMed  Google Scholar 

  27. Talalay P. Hydroxysteroid dehydrogenase. In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology. New York Academic Press, 1962.

  28. Zhang C, Hein TW, Wang W, et al. Constitutive expression of Arginase in microvascular endothelial cells counteracts nitric oxide mediated vasodilatory function. FASEB J. 2001;15:1264–6.

    Article  CAS  PubMed  Google Scholar 

  29. Miranda KM, Espey MG, Wink DA. A rapid, simple spectrophotometric method for simultaneous detection of nitrate and nitrite. Nitric Oxide. 2001;5:62–71. https://doi.org/10.1006/niox.2000.0319.

    Article  CAS  PubMed  Google Scholar 

  30. Hayashi I, Morishita Y, Imai K, et al. High-throughput spectrophotometric assay of reactive oxygen species in serum. Mutat Res. 2007;631:55–61. https://doi.org/10.1016/j.mrgentox.2007.04.006.

    Article  CAS  PubMed  Google Scholar 

  31. Cushman DW, Cheung HS. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem Pharmacol. 1971;20:1637–48. https://doi.org/10.1016/0006-2952(71)90292-9.

    Article  CAS  PubMed  Google Scholar 

  32. Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95:351–8.

    Article  CAS  PubMed  Google Scholar 

  33. Aebi H. Catalase in vitro. Methods Enzymol. 1984;105:121–6.

    Article  CAS  PubMed  Google Scholar 

  34. Habig WH, Pabst MJ, Jakoby WB. Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem. 1974;249:7130–9.

    Article  CAS  PubMed  Google Scholar 

  35. Ellman GL. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959;82:70–7. https://doi.org/10.1016/0003-9861(59)90090-6.

    Article  CAS  PubMed  Google Scholar 

  36. Ajayi OB, Oyetayo FL, Akomolafe SF. Starch composition, glycemic indices, antioxidant properties and carbohydrate hydrolyzing enzymes activities of African star apple fruit parts. BMC Complement Med Ther. 2020;20:260. https://doi.org/10.1186/s12906-020-03053-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Taler SJ, Textor SC, Canzanello VJ, et al. Cyclosporin-induced hypertension: incidence, pathogenesis and management. Drug Saf. 1999;20:437–49. https://doi.org/10.2165/00002018-199920050-00004.

    Article  CAS  PubMed  Google Scholar 

  38. Jimenez R, Duarte J, Perez-Vizcaino F. Epicatechin: endothelial function and blood pressure. J Agric Food Chem. 2012;60:8823–30. https://doi.org/10.1021/jf205370q.

    Article  CAS  PubMed  Google Scholar 

  39. Gómez-Guzmán M, Jiménez R, Sánchez M, et al. Epicatechin lowers blood pressure, restores endothelial function, and decreases oxidative stress and endothelin-1 and NADPH oxidase activity in DOCA-salt hypertension. Free Radical Biol Med. 2012;52:70–9. https://doi.org/10.1016/j.freeradbiomed.2011.09.015.

    Article  CAS  Google Scholar 

  40. Kluknavsky M, Balis P, Skratek M, et al. (-)-Epicatechin reduces the blood pressure of young borderline hypertensive rats during the post-treatment period. Antioxidants (Basel) 2020; 9. https://doi.org/10.3390/antiox9020096.

  41. Bernatova I. Biological activities of (−)-epicatechin and (−)-epicatechin-containing foods: Focus on cardiovascular and neuropsychological health. Biotechnol Adv. 2018;36:666–81. https://doi.org/10.1016/j.biotechadv.2018.01.009.

    Article  CAS  PubMed  Google Scholar 

  42. Luo D, Xu J, Chen X, et al. (-)-Epigallocatechin-3-gallate (EGCG) attenuates salt-induced hypertension and renal injury in Dahl salt-sensitive rats. Sci Rep. 2020;10:4783. https://doi.org/10.1038/s41598-020-61794-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wang MH, Chang WJ, Soung HS, et al. (-)-Epigallocatechin-3-gallate decreases the impairment in learning and memory in spontaneous hypertension rats. Behav Pharmacol. 2012;23:771–80. https://doi.org/10.1097/FBP.0b013e32835a3bc8.

    Article  CAS  PubMed  Google Scholar 

  44. Breigeiron MK, Lucion AB, Sanvitto GL. Effects of renovascular hypertension on reproductive function in male rats. Life Sci. 2007;80:1627–34. https://doi.org/10.1016/j.lfs.2007.01.030.

    Article  CAS  PubMed  Google Scholar 

  45. Adedara IA, Alake SE, Adeyemo MO, et al. Taurine enhances spermatogenic function and antioxidant defense mechanisms in testes and epididymis of L-NAME-induced hypertensive rats. Biomed Pharmacother. 2018;97:181–9. https://doi.org/10.1016/j.biopha.2017.10.095.

    Article  CAS  PubMed  Google Scholar 

  46. Xu Q, Lin HY, Yeh SD, et al. Infertility with defective spermatogenesis and steroidogenesis in male mice lacking androgen receptor in Leydig cells. Endocrine. 2007;32:96–106. https://doi.org/10.1007/s12020-007-9015-0.

    Article  CAS  PubMed  Google Scholar 

  47. Ye L, Zhao B, Hu G, et al. Inhibition of human and rat testicular steroidogenic enzyme activities by bisphenol A. Toxicol Lett. 2011;207:137–42. https://doi.org/10.1016/j.toxlet.2011.09.001.

    Article  CAS  PubMed  Google Scholar 

  48. Seethalakshmi L, Flores C, Carboni AA, et al. Cyclosporine: its effects on testicular function and fertility in the prepubertal rat. J Androl. 1990;11:17–24.

    CAS  PubMed  Google Scholar 

  49. Manna PR, Stetson CL, Slominski AT, et al. Role of the steroidogenic acute regulatory protein in health and disease. Endocrine. 2016;51:7–21. https://doi.org/10.1007/s12020-015-0715-6.

    Article  CAS  PubMed  Google Scholar 

  50. Rone MB, Fan J, Papadopoulos V. Cholesterol transport in steroid biosynthesis: role of protein-protein interactions and implications in disease states. Biochim Biophys Acta. 2009;1791:646–58. https://doi.org/10.1016/j.bbalip.2009.03.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Oduwole OO, Peltoketo H, Huhtaniemi IT. Role of follicle-stimulating hormone in spermatogenesis. Front Endocrinol (Lausanne). 2018;9:763. https://doi.org/10.3389/fendo.2018.00763.

    Article  Google Scholar 

  52. Muezzinogu T, Gumus B, Temeltas G, et al. A relationship of sex hormone levels and erectile dysfunction: which tests should be done routinely? Yonsei Med J. 2007;48:1015–9. https://doi.org/10.3349/ymj.2007.48.6.1015.

    Article  CAS  PubMed  Google Scholar 

  53. Orlowski M and Sarao MS. Physiology, follicle stimulating hormone. StatPearls. Treasure Island (FL), 2020.

  54. Araujo AB, Wittert GA. Endocrinology of the aging male. Best Pract Res Clin Endocrinol Metab. 2011;25:303–19. https://doi.org/10.1016/j.beem.2010.11.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kim NN, Christianson DW and Traish AM. Role of arginase in the male and female sexual arousal response. J Nutr 2004; 134: 2873S-2879S; discussion 2895S. https://doi.org/10.1093/jn/134.10.2873S.

  56. Durante W, Johnson FK, Johnson RA. Arginase: a critical regulator of nitric oxide synthesis and vascular function. Clin Exp Pharmacol Physiol. 2007;34:906–11. https://doi.org/10.1111/j.1440-1681.2007.04638.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Habib S, Ali A. Biochemistry of nitric oxide. Indian J Clin Biochem. 2011;26:3–17. https://doi.org/10.1007/s12291-011-0108-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Burnett AL. The role of nitric oxide in erectile dysfunction: implications for medical therapy. J Clin Hypertens (Greenwich). 2006;8:53–62. https://doi.org/10.1111/j.1524-6175.2006.06026.x.

    Article  CAS  Google Scholar 

  59. Davies KP. Development and therapeutic applications of nitric oxide releasing materials to treat erectile dysfunction. Future Sci OA 2015; 1 2016/03/29. https://doi.org/10.4155/fso.15.53.

  60. Pan PP, Zhan QT, Le F, et al. Angiotensin-converting enzymes play a dominant role in fertility. Int J Mol Sci. 2013;14:21071–86. https://doi.org/10.3390/ijms141021071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Esther CR Jr, Marino EM, Bernstein KE. The role of angiotensin-converting enzyme in blood pressure control, renal function, and male fertility. Trends Endocrinol Metab. 1997;8:181–6. https://doi.org/10.1016/s1043-2760(97)00039-8.

    Article  CAS  PubMed  Google Scholar 

  62. Hagaman JR, Moyer JS, Bachman ES, et al. Angiotensin-converting enzyme and male fertility. Proc Natl Acad Sci U S A. 1998;95:2552–7. https://doi.org/10.1073/pnas.95.5.2552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Oboh G, Ademiluyi AO, Ademosun AO, et al. Phenolic extract from Moringa oleifera leaves inhibits key enzymes linked to erectile dysfunction and oxidative stress in rats’ penile tissues. Biochem Res Int. 2015;2015: 175950. https://doi.org/10.1155/2015/175950.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Agunloye OM, Oboh G, Bello GT, et al. Caffeic and chlorogenic acids modulate altered activity of key enzymes linked to hypertension in cyclosporine-induced hypertensive rats. J Basic Clin Physiol Pharmacol 2020 2020/10/02. https://doi.org/10.1515/jbcpp-2019-0360.

  65. Hackl LP, Cuttle G, Dovichi SS, et al. Inhibition of angiotesin-converting enzyme by quercetin alters the vascular response to brandykinin and angiotensin I. Pharmacology. 2002;65:182–6. https://doi.org/10.1159/000064341.

    Article  CAS  PubMed  Google Scholar 

  66. Alahmar AT. Role of oxidative stress in male infertility: an updated review. J Hum Reprod Sci. 2019;12:4–18. https://doi.org/10.4103/jhrs.JHRS_150_18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Wagner H, Cheng JW, Ko EY. Role of reactive oxygen species in male infertility: an updated review of literature. Arab J Urol. 2018;16:35–43. https://doi.org/10.1016/j.aju.2017.11.001.

    Article  PubMed  Google Scholar 

  68. Agarwal A, Virk G, Ong C, et al. Effect of oxidative stress on male reproduction. World J Mens Health. 2014;32:1–17. https://doi.org/10.5534/wjmh.2014.32.1.1.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Oboh G, Ademosun AO, Akinleye M, et al. Starch composition, glycemic indices, phenolic constituents, and antioxidative and antidiabetic properties of some common tropical fruits. Journal of Ethnic Foods. 2015;2:64–73. https://doi.org/10.1016/j.jef.2015.05.003.

    Article  Google Scholar 

  70. Monteiro JC, Predes FS, Matta SL, et al. Heteropterys aphrodisiaca infusion reduces the collateral effects of cyclosporine A on the testis. Anat Rec (Hoboken). 2008;291:809–17. https://doi.org/10.1002/ar.20709.

    Article  Google Scholar 

  71. Turk G, Atessahin A, Sonmez M, et al. Lycopene protects against cyclosporine A-induced testicular toxicity in rats. Theriogenology. 2007;67:778–85. https://doi.org/10.1016/j.theriogenology.2006.10.013.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors appreciate Dr. Nnaemeka T. Asogwa’s technical assistance at the Central Research and Diagnostic Laboratory, 132, University Road, Tanke, Ilorin, Kwara State, Nigeria. The authors did not received funding, grant, or any other support from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seun F. Akomolafe.

Ethics declarations

Conflicts of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

This study was performed with the Guide for the Care and Use of Laboratory Animals prepared by the Science National Academy and the Health National Institute. Approval was granted by the Ethics Committee of Ekiti State University ORD/AD/EAC/19/0072).

Consent to Participate

Not applicable for this study.

Consent for Publication

Not applicable for this study.

Data Availability

Data will be available on request.

Code Availability

Graphpad Prism version 8.0 was used in this study.

Ethics Committee Approval

The institutional ethics committee approved the study ORD/AD/EAC/19/0072). The authors also followed the Guide for the Care and Use of Laboratory Animals prepared by the Science National Academy and the Health National Institute.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 469 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akomolafe, S.F., Olasehinde, T.A., Oladapo, I.F. et al. Diet Supplemented with Chrysophyllum albidum G. Don (Sapotaceae) Fruit Pulp Improves Reproductive Function in Hypertensive Male Rats. Reprod. Sci. 29, 540–556 (2022). https://doi.org/10.1007/s43032-021-00746-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00746-5

Keywords

Navigation