Skip to main content

Gestational Intermittent Hypoxia Induces Sex-Specific Impairment in Endothelial Mechanisms and Sex Steroid Hormone Levels in Male Rat Offspring


Obstructive sleep apnea (OSA) is highly prevalent during gestation and is linked with adverse fetal outcomes. We examined whether gestational intermittent hypoxia (GIH), the main feature of OSA, leads to sex-specific alterations in cardiovascular function and vascular mechanisms in the offspring. Pregnant rats exposed to intermittent hypoxia or ambient air from gestation days 10 to 21 and their offspring were used for the study. GIH exposure did not affect water and food intake in dams. Compared to controls, the male and female offspring born to GIH dams were smaller in weight by 14% and 12%, respectively, and exhibited catch-up growth. Cardiac function was not affected in either GIH males or females. At 12 weeks of age, blood pressure was increased in GIH males, but not GIH females, compared to their control counterparts. While mesenteric arterial contractile responses to phenylephrine and endothelin were unaffected in GIH males and females, relaxation response to acetylcholine was reduced in GIH males but not GIH females. Relaxation to sodium nitroprusside was unaffected in both GIH males and females. Total eNOS expression was not affected, but phospho(Ser1177)-eNOS levels were decreased in GIH males. eNOS expression and its phosphorylation status were unaffected in GIH females. Serum testosterone and estradiol levels were higher in GIH males but were unaltered in GIH females. Together, these findings suggest that GIH leads to a sex-specific increase in blood pressure in adult male offspring with blunted endothelium-mediated relaxation, decreased eNOS activity, and elevated sex steroid hormone levels.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Availability of Data and Material

Data available within the article. Raw data that support the findings of this study are available from the corresponding author, upon request.


  1. 1.

    Whelton PK, Carey RM, Aronow WS, Casey DE Jr, Collins KJ, Dennison Himmelfarb C, DePalma SM, Gidding S, Jamerson KA, Jones DW, MacLaughlin EJ, Muntner P, et al. ACC/AHA/AAPA/ABC/ACPM/AGS/APhA/ASH/ASPC/NMA/PCNA guideline for the prevention, detection, evaluation, and management of high blood pressure in adults: a report of the American College of Cardiology/American Heart Association Task Force on clinical practice guidelines. J Am Coll Cardiol. 2017;71:e127–248.

    PubMed  Article  Google Scholar 

  2. 2.

    Muntner P, Carey RM, Gidding S, Jones DW, Taler SJ, Wright JT Jr, Whelton PK. Potential US population impact of the 2017 ACC/AHA high blood pressure guideline. Circulation. 2018;137:109–18.

    PubMed  Article  Google Scholar 

  3. 3.

    Mills KT, Bundy JD, Kelly TN, Reed JE, Kearney PM, Reynolds K, Chen J, He J. Global disparities of hypertension prevalence and control: a systematic analysis of population-based studies from 90 countries. Circulation. 2016;134:441–50.

    PubMed  PubMed Central  Article  Google Scholar 

  4. 4.

    Dzau VJ, Balatbat CA. Future of hypertension. Hypertension. 2019;74:450–7.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Ehret GB, Caulfield MJ. Genes for blood pressure: an opportunity to understand hypertension. Eur Heart J. 2013;34:951–61.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Martin H, Antony K, Kumar S. Obstructive sleep apnea in pregnancy – development, impact and potential mechanisms. Journal of Women’s Health and Development. 2020;3(2020):446–69.

    Article  Google Scholar 

  7. 7.

    Johns EC, Denison FC, Reynolds RM. Sleep disordered breathing in pregnancy: a review of the pathophysiology of adverse pregnancy outcomes. Acta Physiol (Oxf). 2020;229:e13458.

    CAS  Article  Google Scholar 

  8. 8.

    Pengo MF, Won CH, Bourjeily G. Sleep in women across the life span. Chest. 2018;154:196–206.

    PubMed  PubMed Central  Article  Google Scholar 

  9. 9.

    Sedov ID, Cameron EE, Madigan S, Tomfohr-Madsen LM. Sleep quality during pregnancy: a meta-analysis. Sleep Med Rev. 2018;38:168–76.

    PubMed  Article  Google Scholar 

  10. 10.

    Hashmi AM, Bhatia SK, Bhatia SK, Khawaja IS. Insomnia during pregnancy: diagnosis and rational interventions. Pak J Med Sci. 2016;32:1030–7.

    PubMed  PubMed Central  Article  Google Scholar 

  11. 11.

    Nowakowski S, Meers J, Heimbach E. Sleep and women’s health. Sleep Med Res. 2013;4:1–22.

    PubMed  PubMed Central  Article  Google Scholar 

  12. 12.

    Dominguez JE, Krystal AD, Habib AS. Obstructive sleep apnea in pregnant women: a review of pregnancy outcomes and an approach to management. Anesth Analg. 2018;127:1167–77.

    PubMed  PubMed Central  Article  Google Scholar 

  13. 13.

    Facco FL, Ouyang DW, Zee PC, Grobman WA. Sleep disordered breathing in a high-risk cohort prevalence and severity across pregnancy. Am J Perinatol. 2014;31:899–904.

    PubMed  PubMed Central  Article  Google Scholar 

  14. 14.

    Dominguez JE, Street L, Louis J. Management of obstructive sleep apnea in pregnancy. Obstet Gynecol Clin North Am. 2018;45:233–47.

    PubMed  PubMed Central  Article  Google Scholar 

  15. 15.

    Park JG, Ramar K, Olson EJ. Updates on definition, consequences, and management of obstructive sleep apnea. Mayo Clin Proc. 2011;86:549–54.

    PubMed  PubMed Central  Article  Google Scholar 

  16. 16.

    Farabi SS, Barbour LA, Hernandez TL. Sleep-disordered breathing in pregnancy: a developmental origin of offspring obesity? J Dev Orig Health Dis. 2021;12:237–49.

    PubMed  Article  Google Scholar 

  17. 17.

    Warland J, Dorrian J, Morrison JL, O’Brien LM. Maternal sleep during pregnancy and poor fetal outcomes: a scoping review of the literature with meta-analysis. Sleep Med Rev. 2018;41:197–219.

    PubMed  Article  Google Scholar 

  18. 18.

    Ding XX, Wu YL, Xu SJ, Zhang SF, Jia XM, Zhu RP, Hao JH, Tao FB. A systematic review and quantitative assessment of sleep-disordered breathing during pregnancy and perinatal outcomes. Sleep Breath. 2014;18:703–13.

    PubMed  Article  Google Scholar 

  19. 19.

    Chen YH, Kang JH, Lin CC, Wang IT, Keller JJ, Lin HC. Obstructive sleep apnea and the risk of adverse pregnancy outcomes. Am J Obstet Gynecol. 2012;206(136):e131-135.

    Google Scholar 

  20. 20.

    Louis JM, Auckley D, Sokol RJ, Mercer BM. Maternal and neonatal morbidities associated with obstructive sleep apnea complicating pregnancy. Am J Obstet Gynecol. 2010;202(261):e261-265.

    Google Scholar 

  21. 21.

    Pamidi S, Marc I, Simoneau G, Lavigne L, Olha A, Benedetti A, Series F, Fraser W, Audibert F, Bujold E, Gagnon R, Schwartzman K, et al. Maternal sleep-disordered breathing and the risk of delivering small for gestational age infants: a prospective cohort study. Thorax. 2016;71:719–25.

    PubMed  Article  Google Scholar 

  22. 22.

    Fung AM, Wilson DL, Lappas M, Howard M, Barnes M, O’Donoghue F, Tong S, Esdale H, Fleming G, Walker SP. Effects of maternal obstructive sleep apnoea on fetal growth: a prospective cohort study. PLoS One. 2013;8:e68057.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Iqbal W, Ciriello J. Effect of maternal chronic intermittent hypoxia during gestation on offspring growth in the rat. Am J Obstet Gynecol. 2013;209(564):e561-569.

    Google Scholar 

  24. 24.

    Gozal D, Reeves SR, Row BW, Neville JJ, Guo SZ, Lipton AJ. Respiratory effects of gestational intermittent hypoxia in the developing rat. Am J Respir Crit Care Med. 2003;167:1540–7.

    PubMed  Article  Google Scholar 

  25. 25.

    Khalyfa A, Cortese R, Qiao Z, Ye H, Bao R, Andrade J, Gozal D. Late gestational intermittent hypoxia induces metabolic and epigenetic changes in male adult offspring mice. J Physiol. 2017;595:2551–68.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  26. 26.

    McDonald FB, Dempsey EM, O’Halloran KD. Effects of gestational and postnatal exposure to chronic intermittent hypoxia on diaphragm muscle contractile function in the rat. Front Physiol. 2016;7:276.

    PubMed  PubMed Central  Google Scholar 

  27. 27.

    Badran M, Yassin BA, Lin DTS, Kobor MS, Ayas N, Laher I. Gestational intermittent hypoxia induces endothelial dysfunction, reduces perivascular adiponectin and causes epigenetic changes in adult male offspring. J Physiol. 2019;597:5349–64.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Mao M, Yang L, Jin Z, Li LX, Wang YR, Li TT, Zhao YJ, Ai J. Impact of intrauterine hypoxia on adolescent and adult cognitive function in rat offspring: sexual differences and the effects of spermidine intervention. Acta Pharmacol Sin. 2021;42:361–9.

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Johnson SM, Randhawa KS, Epstein JJ, Gustafson E, Hocker AD, Huxtable AG, Baker TL, Watters JJ. Gestational intermittent hypoxia increases susceptibility to neuroinflammation and alters respiratory motor control in neonatal rats. Respir Physiol Neurobiol. 2018;256:128–42.

    PubMed  Article  Google Scholar 

  30. 30.

    Fan JM, Wang X, Hao K, Yuan Y, Chen XQ, Du JZ. Upregulation of PVN CRHR1 by gestational intermittent hypoxia selectively triggers a male-specific anxiogenic effect in rat offspring. Horm Behav. 2013;63:25–31.

    CAS  PubMed  Article  Google Scholar 

  31. 31.

    Warembourg C, Maitre L, Tamayo-Uria I, Fossati S, Roumeliotaki T, Aasvang GM, Andrusaityte S, Casas M, Cequier E, Chatzi L, Dedele A, Gonzalez JR, et al. Early-life environmental exposures and blood pressure in children. J Am Coll Cardiol. 2019;74:1317–28.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Rogers JM, Ellis-Hutchings RG, Grey BE, Zucker RM, Norwood J Jr, Grace CE, Gordon CJ, Lau C. Elevated blood pressure in offspring of rats exposed to diverse chemicals during pregnancy. Toxicol Sci. 2014;137:436–46.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Chen L, Zadi ZH, Zhang J, Scharf SM, Pae EK. Intermittent hypoxia in utero damages postnatal growth and cardiovascular function in rats. J Appl Physiol. 1985;2018(124):821–30.

    Google Scholar 

  34. 34.

    Ignarro LJ, Buga GM, Wood KS, Byrns RE, Chaudhuri G. Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A. 1987;84:9265–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  35. 35.

    Ignarro LJ, Kadowitz PJ. The pharmacological and physiological role of cyclic GMP in vascular smooth muscle relaxation. Annu Rev Pharmacol Toxicol. 1985;25:171–91.

    CAS  PubMed  Article  Google Scholar 

  36. 36.

    Lim DC, Brady DC, Po P, Chuang LP, Marcondes L, Kim EY, Keenan BT, Guo X, Maislin G, Galante RJ, Pack AI. Simulating obstructive sleep apnea patients’ oxygenation characteristics into a mouse model of cyclical intermittent hypoxia. J Appl Physiol. 1985;2015(118):544–57.

    Google Scholar 

  37. 37.

    Sathishkumar K, Elkins R, Yallampalli U, Yallampalli C. Protein restriction during pregnancy induces hypertension and impairs endothelium-dependent vascular function in adult female offspring. J Vasc Res. 2009;46:229–39.

    PubMed  Article  Google Scholar 

  38. 38.

    Sathishkumar K, Elkins R, Yallampalli U, Yallampalli C. Protein restriction during pregnancy induces hypertension in adult female rat offspring–influence of oestradiol. Br J Nutr. 2012;107:665–73.

    CAS  PubMed  Article  Google Scholar 

  39. 39.

    Gopalakrishnan K, More AS, Hankins GD, Nanovskaya TN, Kumar S. Postnatal cardiovascular consequences in the offspring of pregnant rats exposed to smoking and smoking cessation pharmacotherapies. Reprod Sci. 2017;24:919–33.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Barker DJ, Bull AR, Osmond C, Simmonds SJ. Fetal and placental size and risk of hypertension in adult life. BMJ. 1990;301:259–62.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Ugur MG, Boynukalin K, Atak Z, Ustuner I, Atakan R, Baykal C. Sleep disturbances in pregnant patients and the relation to obstetric outcome. Clin Exp Obstet Gynecol. 2012;39:214–7.

    CAS  PubMed  Google Scholar 

  42. 42.

    Micheli K, Komninos I, Bagkeris E, Roumeliotaki T, Koutis A, Kogevinas M, Chatzi L. Sleep patterns in late pregnancy and risk of preterm birth and fetal growth restriction. Epidemiology. 2011;22:738–44.

    PubMed  Article  Google Scholar 

  43. 43.

    Guilleminault C, Querra-Salva M, Chowdhuri S, Poyares D. Normal pregnancy, daytime sleeping, snoring and blood pressure. Sleep Med. 2000;1:289–97.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Ge X, Tao F, Huang K, Mao L, Huang S, Niu Y, Hao J, Sun Y, Rutayisire E. Maternal snoring may predict adverse pregnancy outcomes: a cohort study in China. PLoS One. 2016;11:e0148732.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  45. 45.

    Antony KM, Agrawal A, Arndt ME, Murphy AM, Alapat PM, Guntupalli KK, Aagaard KM. Association of adverse perinatal outcomes with screening measures of obstructive sleep apnea. J Perinatol. 2014;34:441–8.

    CAS  PubMed  Article  Google Scholar 

  46. 46.

    Olivarez SA, Ferres M, Antony K, Mattewal A, Maheshwari B, Sangi-Haghpeykar H, Aagaard-Tillery K. Obstructive sleep apnea screening in pregnancy, perinatal outcomes, and impact of maternal obesity. Am J Perinatol. 2011;28:651–8.

    PubMed  Article  Google Scholar 

  47. 47.

    Olivarez SA, Maheshwari B, McCarthy M, Zacharias N, van den Veyver I, Casturi L, Sangi-Haghpeykar H, Aagaard-Tillery K. Prospective trial on obstructive sleep apnea in pregnancy and fetal heart rate monitoring. Am J Obstet Gynecol. 2010;202(552):e551-557.

    Google Scholar 

  48. 48.

    Papanikolaou IG, Domali E, Daskalakis G, Theodora M, Telaki E, Drakakis P, Loutradis D. Abnormal placentation: current evidence and review of the literature. Eur J Obstet Gynecol Reprod Biol. 2018;228:98–105.

    PubMed  Article  Google Scholar 

  49. 49.

    Song W, Chang WL, Shan D, Gu Y, Gao L, Liang S, Guo H, Yu J, Liu X. Intermittent hypoxia impairs trophoblast cell viability by triggering the endoplasmic reticulum stress pathway. Reprod Sci. 2020;27:477–87.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Hung TH, Skepper JN, Charnock-Jones DS, Burton GJ. Hypoxia-reoxygenation: a potent inducer of apoptotic changes in the human placenta and possible etiological factor in preeclampsia. Circ Res. 2002;90:1274–81.

    CAS  PubMed  Article  Google Scholar 

  51. 51.

    Brener A, Lebenthal Y, Levy S, Dunietz GL, Sever O, Tauman R. Mild maternal sleep-disordered breathing during pregnancy and offspring growth and adiposity in the first 3 years of life. Sci Rep. 2020;10:13979.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Writing Group M, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, Cushman M, Das SR, de Ferranti S, Despres JP, Fullerton HJ, Howard VJ, et al. Heart disease and stroke statistics-2016 update: a report from the American Heart Association. Circulation. 2016;133:e38-360.

    Google Scholar 

  53. 53.

    Yoon SS, Gu Q, Nwankwo T, Wright JD, Hong Y, Burt V. Trends in blood pressure among adults with hypertension: United States, 2003 to 2012. Hypertension. 2015;65:54–61.

    CAS  PubMed  Article  Google Scholar 

  54. 54.

    Murphy JG, Herrington JN, Granger JP, Khalil RA. Enhanced [Ca2+]i in renal arterial smooth muscle cells of pregnant rats with reduced uterine perfusion pressure. Am J Physiol Heart Circ Physiol. 2003;284:H393-403.

    CAS  PubMed  Article  Google Scholar 

  55. 55.

    Rajendran P, Rengarajan T, Thangavel J, Nishigaki Y, Sakthisekaran D, Sethi G, Nishigaki I. The vascular endothelium and human diseases. Int J Biol Sci. 2013;9:1057–69.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. 56.

    Furchgott RF, Zawadzki JV. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288:373–6.

    CAS  PubMed  Article  Google Scholar 

  57. 57.

    Chinnathambi V, Balakrishnan M, Yallampalli C, Sathishkumar K. Prenatal testosterone exposure leads to hypertension that is gonadal hormone-dependent in adult rat male and female offspring. Biol Reprod. 2012;86(137):131–7.

    Google Scholar 

  58. 58.

    Ojeda NB, Grigore D, Yanes LL, Iliescu R, Robertson EB, Zhang H, Alexander BT. Testosterone contributes to marked elevations in mean arterial pressure in adult male intrauterine growth restricted offspring. Am J Physiol Regul Integr Comp Physiol. 2007;292:R758-763.

    CAS  PubMed  Article  Google Scholar 

  59. 59.

    Quinkler M, Diederich S, Bahr V, Oelkers W. The role of progesterone metabolism and androgen synthesis in renal blood pressure regulation. Horm Metab Res. 2004;36:381–6.

    CAS  PubMed  Article  Google Scholar 

  60. 60.

    Chinnathambi V, Balakrishnan M, Ramadoss J, Yallampalli C, Sathishkumar K. Testosterone alters maternal vascular adaptations: role of the endothelial NO system. Hypertension. 2013;61:647–54.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Jankowska EA, Rozentryt P, Ponikowska B, Hartmann O, Kustrzycka-Kratochwil D, Reczuch K, Nowak J, Borodulin-Nadzieja L, Polonski L, Banasiak W, Poole-Wilson PA, Anker SD, et al. Circulating estradiol and mortality in men with systolic chronic heart failure. JAMA. 2009;301:1892–901.

    CAS  PubMed  Article  Google Scholar 

Download references


Supported by the National Institutes of Health (NIH) R01HL119869 and R01HL134779 (S.K.) and R01HL142752 (JJW and TLB).

Author information




Sathish Kumar conceptualized and designed the study. Ruolin Song, Jay S. Mishra, and Sri Vidya Dangudubiyyam contributed to material preparation, data collection, analysis, and interpretation. Ruolin Song and Jay S. Mishra wrote the first draft of the manuscript. Kathleen M. Antony, Tracy L. Baker, and Jyoti J. Watters provided scientific input in the experimental design and critically reviewed the manuscript. All authors edited the manuscript and approved the final version.

Corresponding author

Correspondence to Sathish Kumar.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, R., Mishra, J., Dangudubiyyam, S. et al. Gestational Intermittent Hypoxia Induces Sex-Specific Impairment in Endothelial Mechanisms and Sex Steroid Hormone Levels in Male Rat Offspring. Reprod. Sci. (2021).

Download citation


  • Intermittent hypoxia
  • Pregnancy
  • Blood pressure
  • Fetal programming
  • Endothelium
  • eNOS