Skip to main content
Log in

The Association Between Follicular Fluid Sialic Acid Levels, Oocyte Quality, and Pregnancy Rates

  • Reproductive Endocrinology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Sialic acid residues perform important roles in both physiological and pathologic processes. Our aim was to measure the levels of sialic acid in the follicular fluid of women undergoing in vitro fertilization (IVF) and to assess correlations between IVF parameters and sialic acid levels. All women meeting the inclusion criteria underwent gonadotropin-releasing hormone agonist treatment and during oocyte retrieval, follicular fluids of mature follicles were collected and pooled for each patient. Correlation analysis was made between sialic acid levels and oocyte quality. Eighty-seven patients meeting the inclusion criteria were enrolled. In terms of oocyte quality and sialic acid, follicular fluid total sialic acid (FF-TSA) levels positively correlated with germinal vesicle oocytes and metaphase I oocytes. In terms of clinical parameters, no correlation between sialic acid levels and body mass index, serum levels of hormones, duration of infertility, and the total dose of gonadotropins was observed. The mean FF-TSA was 86.1±35.19 mg/dl in the clinical pregnancy positive group and was 73.64±22.15 mg/dl in the clinical pregnancy negative group. FF-TSA levels positively correlated with immature oocytes. This can be either as part of the normal oocyte maturation or as a compensatory mechanism against reactive oxygen species during the oocyte maturation process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Dumesic DA, Meldrum DR, Katz-Jaffe MG, Krisher RL, Schoolcraft WB. Oocyte environment: follicular fluid and cumulus cells are critical for oocyte health. Fertil Steril. 2015;103(2):303–16. https://doi.org/10.1016/j.fertnstert.2014.11.015 Review.

    Article  PubMed  Google Scholar 

  2. Varki A. Sialic acids in human health and disease. Trends Mol Med. 2008;14(8):351–60. https://doi.org/10.1016/j.molmed.2008.06.002 PubMed PMID: 18606570; PubMed Central PMCID: PMCPMC2553044.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Velasquez JG, Canovas S, Barajas P, et al. Role of sialic acid in bovine sperm-zona pellucida binding. Mol Reprod Dev. 2007;74(5):617–28. https://doi.org/10.1002/mrd.20619.

    Article  CAS  PubMed  Google Scholar 

  4. Clark GF. The role of carbohydrate recognition during human sperm-egg binding. Hum Reprod. 2013;28(3):566–77. https://doi.org/10.1093/humrep/des447.

    Article  CAS  PubMed  Google Scholar 

  5. Boushehri I, Yadav MC, Meur SK. Characteristics of proteoglycans of buffalo ovarian follicular fluid during maturation of follicles. Indian J Biochem Biophys. 1996;33(3):213–7.

    CAS  PubMed  Google Scholar 

  6. Tharmalingam-Jaikaran T, Walsh SW, McGettigan PA, et al. N-glycan profiling of bovine follicular fluid at key dominant follicle developmental stages. Reproduction. 2014;148(6):569–80. https://doi.org/10.1530/REP-14-0035.

    Article  CAS  PubMed  Google Scholar 

  7. Kim JW, Park HJ, Chae SK, et al. Ganglioside GD1a promotes oocyte maturation, furthers preimplantation development, and increases blastocyst quality in pigs. J Reprod Dev. 2016;62(3):249–55. https://doi.org/10.1262/jrd.2015-083 PubMed PMID: 26860251; PubMed Central PMCID: PMCPMC4919288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Veeck L. The morphological assessment of human oocytes and early conception. In: BWW BAK, editor. Handbook of the Laboratory Diagnosis and Treatment of Infertility. Boca Raton: CRC Press; 1990. p. 353–69.

    Google Scholar 

  9. LL V. Preembryo grading. Atlas of the Human Oocyte and Early Conceptus. Vol. 2. Baltimore: Williams and Wilkins; 1991. 121-149.

  10. Tram TH, Brand Miller JC, McNeil Y, et al. Sialic acid content of infant saliva: comparison of breast fed with formula fed infants. Arch Dis Child. 1997;77(4):315–8 PubMed PMID: 9389234; PubMed Central PMCID: PMCPMC1717361.

    Article  CAS  Google Scholar 

  11. Fedorov VN, Kochetov AG, Liang OV, Skvortsova VI. Clinical and laboratory assessment of indicators of oxidative status in the cerebrospinal fluid of patients with ischemic stroke. Zh Nevrol Psikhiatr Im S S Korsakova. 2011;111(8 Pt 2):31–4.

    CAS  PubMed  Google Scholar 

  12. Rajendiran KS, Ananthanarayanan RH, Satheesh S, et al. Elevated levels of serum sialic acid and high-sensitivity C-reactive protein: markers of systemic inflammation in patients with chronic heart failure. Br J Biomed Sci. 2014;71(1):29–32.

    Article  CAS  Google Scholar 

  13. Mahajan VS, Pillai S. Sialic acids and autoimmune disease. Immunol Rev. 2016;269(1):145–61. https://doi.org/10.1111/imr.12344 PubMed PMID: 26683151; PubMed Central PMCID: PMCPMC4769436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Miwa N. Protein-carbohydrate interaction between sperm and the egg-coating envelope and its regulation by Dicalcin, a Xenopus laevis zona pellucida protein-associated protein. Molecules. 2015;20(5):9468–86. https://doi.org/10.3390/molecules20059468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hwang SU, Jeon Y, Yoon JD, et al. Effect of ganglioside GT1b on the in vitro maturation of porcine oocytes and embryonic development. J Reprod Dev. 2015;61(6):549–57. https://doi.org/10.1262/jrd.2015-049 PubMed PMID: 26370787; PubMed Central PMCID: PMCPMC4685221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Ouandaogo ZG, Frydman N, Hesters L, Assou S, Haouzi D, Dechaud H, et al. Differences in transcriptomic profiles of human cumulus cells isolated from oocytes at GV, MI and MII stages after in vivo and in vitro oocyte maturation. Hum Reprod. 2012;27(8):2438–47. https://doi.org/10.1093/humrep/des172.

    Article  CAS  PubMed  Google Scholar 

  17. Yokoo M, Sato E. Physiological function of hyaluronan in mammalian oocyte maturation. Reprod Med Biol. 2011;10(4):221–9. https://doi.org/10.1007/s12522-011-0093-6 eCollection 2011 Dec. Review. PubMed PMID: 29699096; PubMed Central PMCID: PMC5904653.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lesley J, Hyman R. CD44 structure and function. Front Biosci. 1998;3:d616–30 Review. PubMed PMID: 9634544.

    Article  CAS  Google Scholar 

  19. Faller CE, Guvench O. Terminal sialic acids on CD44 N-glycans can block hyaluronan binding by forming competing intramolecular contacts with arginine sidechains. Proteins. 2014;82(11):3079–89. https://doi.org/10.1002/prot.24668 PubMed PMID: 25116630; PubMed Central PMCID: PMC4206607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bromfield JJ, Sheldon IM. Lipopolysaccharide initiates inflammation in bovine granulosa cells via the TLR4 pathway and perturbs oocyte meiotic progression in vitro. Endocrinology. 2011;152(12):5029–40. https://doi.org/10.1210/en.2011-1124 PubMed PMID: 21990308; PubMed Central PMCID: PMCPMC3428914.

    Article  CAS  PubMed  Google Scholar 

  21. Kala M, Shaikh MV, Nivsarkar M. Equilibrium between anti-oxidants and reactive oxygen species: a requisite for oocyte development and maturation. Reprod Med Biol. 2017;16(1):28–35. https://doi.org/10.1002/rmb2.12013 PubMed PMID: 29259447; PubMed Central PMCID: PMCPMC5715868.

    Article  CAS  PubMed  Google Scholar 

  22. Iijima R, Takahashi H, Namme R, Ikegami S, Yamazaki M. Novel biological function of sialic acid (N-acetylneuraminic acid) as a hydrogen peroxide scavenger. FEBS Lett. 2004;561(1-3):163–6. https://doi.org/10.1016/S0014-5793(04)00164-4.

    Article  CAS  PubMed  Google Scholar 

  23. Prasad S, Tiwari M, Pandey AN, Shrivastav TG, Chaube SK. Impact of stress on oocyte quality and reproductive outcome. J Biomed Sci. 2016;23:36. https://doi.org/10.1186/s12929-016-0253-4 Review. PubMed PMID: 27026099; PubMed Central PMCID:PMC4812655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

B Aslan Çetin: manuscript writing and data analysis

P Ocal: project development and manuscript editing

T Irez: project development and data collection

E Uslu: data collection and data analysis

K Irmak: manuscript writing

S Karataş: data analysis

Corresponding author

Correspondence to Berna Aslan Çetin.

Ethics declarations

Ethical Approval

All procedures performed were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards.

Informed Consent

Informed consent was obtained from all women participated in the study.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aslan Çetin, B., Ocal, P., Irez, T. et al. The Association Between Follicular Fluid Sialic Acid Levels, Oocyte Quality, and Pregnancy Rates. Reprod. Sci. 29, 633–638 (2022). https://doi.org/10.1007/s43032-021-00688-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00688-y

Keywords

Navigation