Skip to main content

Advertisement

Log in

Involvement of the Tim-3 Pathway in the Pathogenesis of Pre-Eclampsia

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Current methods of early diagnosis and prevention of pre-eclampsia (PE) are limited; the only available definite treatment is the initiation of delivery and complete removal of the placenta. Inappropriate activation of the immune system is thought to play considerable roles in PE. T cell immunoglobulin mucin-3 (Tim-3) has been reported to regulate immune responses and play important roles in maternal-fetal tolerance during early pregnancy. In this study, we investigated the functional regulation of Tim-3 in the maternal-fetal crosstalk during 3rd-trimester healthy pregnancy and its possible role in the pathogenesis of PE. We found that Tim-3 expression on decidual immune cells was associated with production of anti-inflammatory cytokines. Tim-3 pathway blockade resulted in higher IFN-γ but lower IL-4 and IL-10 production. Using a tube formation assay between HTR8/SVneo cells and human umbilical vein endothelial cells, we found that Tim-3 pathway blockade inhibits tube formation and reversed by addition of recombinant IL-4 and/or IL-10. Pre-eclamptic patients showed reduced Tim-3 expression on both decidual and peripheral immune cells (especially on peripheral CD8+T cells). Therefore, we proposed that abnormal Tim-3 signal resulted in immunological imbalance at the maternal-fetal interface and may be involved in the progress of PE by affecting uterine spiral artery remodeling. Our study expanded the regulatory function of Tim-3 signaling pathway to the 3rd-trimester pregnancy and provided a new target for early warning and therapeutic strategies of PE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Mol B, Roberts CT, Thangaratinam S, Magee LA, de Groot C, Hofmeyr GJ. Pre-eclampsia. Lancet. 2016;387(10022):999–1011. https://doi.org/10.1016/S0140-6736(15)00070-7.

    Article  PubMed  Google Scholar 

  2. Redman CW, Sargent IL. Latest advances in understanding preeclampsia. Science. 2005;308(5728):1592–4. https://doi.org/10.1126/science.1111726.

    Article  CAS  PubMed  Google Scholar 

  3. Raymond D, Peterson E. A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv. 2011;66(8):497–506. https://doi.org/10.1097/OGX.0b013e3182331028.

    Article  PubMed  Google Scholar 

  4. Redman CW, Sargent IL. Immunology of pre-eclampsia. Am J Reprod Immunol. 2010;63(6):534–43. https://doi.org/10.1111/j.1600-0897.2010.00831.x.

    Article  CAS  PubMed  Google Scholar 

  5. Raguema N, Moustadraf S, Bertagnolli M. Immune and apoptosis mechanisms regulating placental development and vascularization in preeclampsia. Front Physiol. 2020;11:98. https://doi.org/10.3389/fphys.2020.00098.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Arck PC, Hecher K. Fetomaternal immune cross-talk and its consequences for maternal and offspring’s health. Nat Med. 2013;19(5):548–56. https://doi.org/10.1038/nm.3160.

    Article  CAS  PubMed  Google Scholar 

  7. Vishnyakova P, Elchaninov A, Fatkhudinov T, Sukhikh G. Role of the monocyte-macrophage system in normal pregnancy and preeclampsia. Int J Mol Sci. 2019;20(15). https://doi.org/10.3390/ijms20153695.

  8. Yang F, Zheng Q, Jin L. Dynamic function and composition changes of immune cells during normal and pathological pregnancy at the maternal-fetal interface. Front Immunol. 2019;10:2317. https://doi.org/10.3389/fimmu.2019.02317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Freeman GJ, Casasnovas JM, Umetsu DT, DeKruyff RH. TIM genes: a family of cell surface phosphatidylserine receptors that regulate innate and adaptive immunity. Immunol Rev. 2010;235(1):172–89. https://doi.org/10.1111/j.0105-2896.2010.00903.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhou G, Sprengers D, Boor P, Doukas M, Schutz H, Mancham S, et al. Antibodies against immune checkpoint molecules restore functions of tumor-infiltrating T cells in hepatocellular carcinomas. Gastroenterology. 2017;153(4):1107–19. https://doi.org/10.1053/j.gastro.2017.06.017.

    Article  CAS  PubMed  Google Scholar 

  11. Jiang X, Yu J, Shi Q, Xiao Y, Wang W, Chen G, et al. Tim-3 promotes intestinal homeostasis in DSS colitis by inhibiting M1 polarization of macrophages. Clin Immunol. 2015;160(2):328–35. https://doi.org/10.1016/j.clim.2015.07.008.

    Article  CAS  PubMed  Google Scholar 

  12. Sakhdari A, Mujib S, Vali B, Yue FY, MacParland S, Clayton K, et al. Tim-3 negatively regulates cytotoxicity in exhausted CD8+ T cells in HIV infection. PLoS One. 2012;7(7):e40146. https://doi.org/10.1371/journal.pone.0040146.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sanchez-Fueyo A, Tian J, Picarella D, Domenig C, Zheng XX, Sabatos CA, et al. Tim-3 inhibits T helper type 1-mediated auto- and alloimmune responses and promotes immunological tolerance. Nat Immunol. 2003;4(11):1093–101. https://doi.org/10.1038/ni987.

    Article  PubMed  Google Scholar 

  14. Wang S, Cao C, Piao H, Li Y, Tao Y, Zhang X, et al. Tim-3 protects decidual stromal cells from toll-like receptor-mediated apoptosis and inflammatory reactions and promotes Th2 bias at the maternal-fetal interface. Sci Rep. 2015;5:9013. https://doi.org/10.1038/srep09013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wang S, Chen C, Li M, Qian J, Sun F, Li Y, et al. Blockade of CTLA-4 and Tim-3 pathways induces fetal loss with altered cytokine profiles by decidual CD4(+)T cells. Cell Death Dis. 2019;10(1):15. https://doi.org/10.1038/s41419-018-1251-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang S, Zhu X, Xu Y, Zhang D, Li Y, Tao Y, et al. Programmed cell death-1 (PD-1) and T cell immunoglobulin mucin-3 (Tim-3) regulate CD4+ T cells to induce Type 2 helper T cell (Th2) bias at the maternal-fetal interface. Hum Reprod. 2016;31(4):700–11. https://doi.org/10.1093/humrep/dew019.

    Article  CAS  PubMed  Google Scholar 

  17. Wang SC, Li YH, Piao HL, Hong XW, Zhang D, Xu YY, et al. PD-1 and Tim-3 pathways are associated with regulatory CD8+ T cell function in decidua and maintenance of normal pregnancy. Cell Death Dis. 2015;6:e1738. https://doi.org/10.1038/cddis.2015.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang S, Sun F, Li M, Qian J, Chen C, Wang M, et al. The appropriate frequency and function of decidual Tim-3(+)CTLA-4(+)CD8(+) T cells are important in maintaining normal pregnancy. Cell Death Dis. 2019;10(6):407. https://doi.org/10.1038/s41419-019-1642-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chabtini L, Mfarrej B, Mounayar M, Zhu B, Batal I, Dakle PJ, et al. TIM-3 regulates innate immune cells to induce fetomaternal tolerance. J Immunol. 2013;190(1):88–96. https://doi.org/10.4049/jimmunol.1202176.

    Article  CAS  PubMed  Google Scholar 

  20. Xu YY, Wang SC, Lin YK, Li DJ, DU MR. Tim-3 and PD-1 regulate CD8(+) T cell function to maintain early pregnancy in mice. J Reprod Dev. 2017;63(3):289–94. https://doi.org/10.1262/jrd.2016-177.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists Task Force on Hypertension in Pregnancy. Hypertension in pregnancy. Report of the American College of Obstetricians and Gynecologists Task Force on Hypertension in Pregnancy. Obstet Gynecol. 2013;122(5):1122–31. https://doi.org/10.1097/01.AOG.0000437382.03963.88.

    Article  Google Scholar 

  22. Guo PF, Du MR, Wu HX, Lin Y, Jin LP, Li DJ. Thymic stromal lymphopoietin from trophoblasts induces dendritic cell-mediated regulatory TH2 bias in the decidua during early gestation in humans. Blood. 2010;116(12):2061–9. https://doi.org/10.1182/blood-2009-11-252940.

    Article  CAS  PubMed  Google Scholar 

  23. Gerdes J, Lemke H, Baisch H, Wacker HH, Schwab U, Stein H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J Immunol. 1984;133(4):1710–5.

    CAS  PubMed  Google Scholar 

  24. Robertson SA, Green ES, Care AS, Moldenhauer LM, Prins JR, Hull ML, et al. Therapeutic potential of regulatory T cells in preeclampsia-opportunities and challenges. Front Immunol. 2019;10:478. https://doi.org/10.3389/fimmu.2019.00478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bellos I, Karageorgiou V, Kapnias D, Karamanli KE, Siristatidis C. The role of interleukins in preeclampsia: a comprehensive review. Am J Reprod Immunol. 2018;80(6):e13055. https://doi.org/10.1111/aji.13055.

    Article  PubMed  Google Scholar 

  26. Wykes MN, Lewin SR. Immune checkpoint blockade in infectious diseases. Nat Rev Immunol. 2018;18(2):91–104. https://doi.org/10.1038/nri.2017.112.

    Article  CAS  PubMed  Google Scholar 

  27. Xu YY, Wang SC, Li DJ, Du MR. Co-signaling molecules in maternal-fetal immunity. Trends Mol Med. 2017;23(1):46–58. https://doi.org/10.1016/j.molmed.2016.11.001.

    Article  CAS  PubMed  Google Scholar 

  28. Li ZH, Wang LL, Liu H, Muyayalo KP, Huang XB, Mor G, et al. Galectin-9 alleviates LPS-induced preeclampsia-like impairment in rats via switching decidual macrophage polarization to M2 subtype. Front Immunol. 2018;9:3142. https://doi.org/10.3389/fimmu.2018.03142.

    Article  CAS  PubMed  Google Scholar 

  29. Vega-Carrascal I, Reeves EP, NG ME. The role of TIM-containing molecules in airway disease and their potential as therapeutic targets. J Inflamm Res. 2012;5:77–87. https://doi.org/10.2147/JIR.S34225.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Matthiesen L, Berg G, Ernerudh J, Ekerfelt C, Jonsson Y, Sharma S. Immunology of preeclampsia. Chem Immunol Allergy. 2005;89:49–61. https://doi.org/10.1159/000087912.

    Article  CAS  PubMed  Google Scholar 

  31. Chatterjee P, Kopriva SE, Chiasson VL, Young KJ, Tobin RP, Newell-Rogers K, et al. Interleukin-4 deficiency induces mild preeclampsia in mice. J Hypertens. 2013;31(7):1414–23, 1423. https://doi.org/10.1097/HJH.0b013e328360ae6c.

    Article  CAS  PubMed  Google Scholar 

  32. Kalkunte S, Nevers T, Norris WE, Sharma S. Vascular IL-10: a protective role in preeclampsia. J Reprod Immunol. 2011;88(2):165–9. https://doi.org/10.1016/j.jri.2011.01.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Miko E, Meggyes M, Bogar B, Schmitz N, Barakonyi A, Varnagy A, et al. Involvement of Galectin-9/TIM-3 pathway in the systemic inflammatory response in early-onset preeclampsia. PLoS One. 2013;8(8):e71811. https://doi.org/10.1371/journal.pone.0071811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grant from the Nature Science Foundation from National Nature Science Foundation of China (NSFC) (31700799, 31970859, 81601311, 81630036), the National Key R&D Program of China (2016YFC1000403 and 2017YFC1001403), the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine (FIRMX2005XX), the Innovation oriented Science and Technology Grant from NPFPC Key Laboratory of Reproduction Regulation (CX2017 2), the Shanghai Sailing Program (17YF1411600), the Training Program for Young Talents of Shanghai Health System (2018YQ07), the Shanghai Chenguang Program (18CG09), and Development Fund of Shanghai Talents (2018110).

Funding

This work was supported by grant from the Nature Science Foundation from National Nature Science Foundation of China (NSFC) (31700799, 31970859, 81601311, 81630036), the National Key R&D Program of China (2016YFC1000403 and 2017YFC1001403), the Strategic Collaborative Research Program of the Ferring Institute of Reproductive Medicine (FIRMX2005XX), the Innovation oriented Science and Technology Grant from NPFPC Key Laboratory of Reproduction Regulation (CX2017 2), the Shanghai Sailing Program (17YF1411600), the Training Program for Young Talents of Shanghai Health System (2018YQ07), the Shanghai Chenguang Program (18CG09), and Development Fund of Shanghai Talents (2018110).

Author information

Authors and Affiliations

Authors

Contributions

YZ and XTL conceived the experiments. SCW and CQC carried out the experiments and analyzed data. YZ, CQC, MDL, and FRS coordinated the sample collection, data interpretation, literature search, and figure preparation. SCW drafted the manuscript. YZ and MRD revised the manuscript. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Xiaotian Li or Ying Zhang.

Ethics declarations

Ethics Approval and Consent to Participate

The study was approved by the institutional ethics board in Obstetrics and Gynecology Hospital of Fudan University, and each patient finished written consent.

Conflicts of interest

The authors declare that there are no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Chen, C., Sun, F. et al. Involvement of the Tim-3 Pathway in the Pathogenesis of Pre-Eclampsia. Reprod. Sci. 28, 3331–3340 (2021). https://doi.org/10.1007/s43032-021-00675-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00675-3

Keywords

Navigation