Skip to main content

Advertisement

Log in

Enhanced Synergistic-Antioxidant Activity of Melatonin and Tretinoin by Co-encapsulation into Amphiphilic Chitosan Nanocarriers: During Mice In Vitro Matured Oocyte/Morula-Compact Stage Embryo Culture Model

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The use of exogenous antioxidants or the combination of them during in vitro oocyte/embryo culture media is reasonable. Co-delivery by nanocarrier has been designed to overcome the limitations of combining them traditionally. In this work, amphiphilic chitosan nanocarrier (ACN) was applied to co-encapsulate melatonin (Mel) and tretinoin (TTN) by the self-assembled method and evaluate their synergistic antioxidant efficacy in mice oocytes/embryos. The formation of single/dual-ACN was confirmed by Fourier-transformed infrared spectroscopy (FT-IR). The average particle diameter, size distribution, polydispersity index (PDI), and zeta potential of them were measured by dynamic light scattering (DLS), and the morphology was evaluated by TEM and SEM technologies. Also, the encapsulation efficiency (EE%) and drug loading content (DL%) of the nanocapsules were determined by UV-vis spectrophotometry. Studies of the in vitro release showed a continued drug release without any bursting effect of Mel+TTN-ACNs compared with single Mel/TTN-ACNs. Then, in both experiments, nuclear staining (Aceto-orcein and Hoechst 33342), fluorescent staining of H2DCFDA, chemiluminescence test, and qRT-PCR technique were performed as in vitro toxicity studies. The results of all these evaluations demonstrated that the dual delivery of Mel and TTN could accumulate a safety (without high-dose toxicity) synergistic anti-oxidative effect in oocyte/embryo by passive controlled, and inhibit intra/extracellular ROS levels by an enhanced intracellular penetration.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

COCs:

Cumulus-oocyte complex

ACNs:

Amphiphilic chitosan nanocarriers

B-ACN:

Blank nanocapsules

Mel:

Melatonin

TTN:

Tretinoin

Mel+TTN-ACN:

ACN entrapping Mel and TTN

EE%:

Encapsulation efficiency %

DL%:

Drug loading capacity

FSH:

Follicle-stimulating hormone

LH:

Luteinizing hormone

CS:

Chitosan

TPP:

Sodium tripolyphosphate solution

PMSG:

Pregnant mare serum gonadotrophin

BSA:

Bovine Serum Albumin

H2DCFDA:

2′,7′-Dichlorodihydrofluorescein diacetate

GV:

Germinal vesicle

GVBD:

Germinal vesicle breakdown

M I:

Metaphase I

M II:

Metaphase II

t RNA:

Complementary RNA

SD:

Standard deviation

References

  1. Ben-Ami I, Komsky A, Bern O, Kasterstein E, Komarovsky D, Ron-el R. In vitro maturation of human germinal vesicle-stage oocytes: role of epidermal growth factor-like growth factors in the culture medium. Hum Reprod. 2011;26(1):76–81.

    Article  CAS  PubMed  Google Scholar 

  2. Krisher R. The effect of oocyte quality on development. J Anim Sci. 2004;82(suppl_13):E14–23.

    PubMed  Google Scholar 

  3. Kirkegaard K, Hindkjaer JJ, Ingerslev HJ. Effect of oxygen concentration on human embryo development evaluated by time-lapse monitoring. Fertility and sterility. 2013;99(3):738–744.e4.

  4. Guerin P, El Mouatassim S, Menezo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update. 2001;7(2):175–89.

    Article  CAS  PubMed  Google Scholar 

  5. Fernandes R, et al. NLRP5 mediates mitochondrial function in mouse oocytes and embryos. Biol Reprod. 2012;86(5):138 1-10.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Hori A, Yoshida M, Shibata T, Ling F. Reactive oxygen species regulate DNA copy number in isolated yeast mitochondria by triggering recombination-mediated replication. Nucleic Acids Res. 2009;37(3):749–61.

    Article  CAS  PubMed  Google Scholar 

  7. Van Blerkom J. Mitochondria as regulatory forces in oocytes, preimplantation embryos and stem cells. Reprod BioMed Online. 2008;16(4):553–69.

    Article  PubMed  Google Scholar 

  8. Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. In: Advanced protocols in oxidative stress II. 2010, Springer. p. 57-72.

  9. Ménézo Y, Dale B, Cohen M. DNA damage and repair in human oocytes and embryos: a review. Zygote. 2010;18(4):357–65.

    Article  PubMed  Google Scholar 

  10. Gianaroli L, Racowsky C, Geraedts J, Cedars M, Makrigiannakis A, Lobo RA. Best practices of ASRM and ESHRE: a journey through reproductive medicine. Fertil Steril. 2012;98(6):1380–94.

    Article  PubMed  Google Scholar 

  11. Holt WV, Brown JL, Comizzoli P. Conclusions: environmental change, wildlife conservation and reproduction, in Reproductive Sciences in Animal Conservation. 2014, Springer. p. 503-514.

  12. Lee S, Jin JX, Taweechaipaisankul A, Kim GA, Lee BC. Synergistic effects of resveratrol and melatonin on in vitro maturation of porcine oocytes and subsequent embryo development. Theriogenology. 2018;114:191–8.

    Article  CAS  PubMed  Google Scholar 

  13. Tamura H, et al. Antioxidative action of melatonin and reproduction. Glycative Stress Res. 2019;6(3):192–7.

    Google Scholar 

  14. Wang J, Wang X, He Y, Jia L, Yang CS, Reiter RJ, et al. Antioxidant and pro-oxidant activities of melatonin in the presence of copper and polyphenols in vitro and in vivo. Cells. 2019;8(8):903.

    Article  CAS  PubMed Central  Google Scholar 

  15. Yao X, Jiang H, Gao Q, Li YH, Xu YN, Kim NH. Melatonin alleviates defects induced by zearalenone during porcine embryo development. Theriogenology. 2020;151:66–73.

    Article  CAS  PubMed  Google Scholar 

  16. Salehi B, Sharopov F, Fokou P, Kobylinska A, Jonge L, Tadio K, et al. Melatonin in medicinal and food plants: occurrence, bioavailability, and health potential for humans. Cells. 2019;8(7):681.

    Article  CAS  PubMed Central  Google Scholar 

  17. Loren P, Sánchez R, Arias ME, Felmer R, Risopatrón J, Cheuquemán C. Melatonin scavenger properties against oxidative and nitrosative stress: impact on gamete handling and in vitro embryo production in humans and other mammals. Int J Mol Sci. 2017;18(6):1119.

    Article  PubMed Central  Google Scholar 

  18. Tian X, Wang F, Zhang L, Ji P, Wang J, Lv D, et al. Melatonin promotes the in vitro development of microinjected pronuclear mouse embryos via its anti-oxidative and anti-apoptotic effects. Int J Mol Sci. 2017;18(5):988.

    Article  PubMed Central  Google Scholar 

  19. Luchetti F, Canonico B, Betti M, Arcangeletti M, Pilolli F, Piroddi M, et al. Melatonin signaling and cell protection function. FASEB J. 2010;24(10):3603–24.

    Article  CAS  PubMed  Google Scholar 

  20. Abouzaripour M, Fathi F, Daneshi E, Mortezaee K, Rezaie MJ, Abdi M. Combined effect of retinoic acid and basic fibroblast growth factor on maturation of mouse oocyte and subsequent fertilization and development. Int J Fertil Steril. 2018;12(1):68–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Read CC, Dyce PW. All-trans retinoic acid exposure increases connexin 43 expression in cumulus cells and improves embryo development in bovine oocytes. Mol Reprod Dev. 2019;86(12):1865–73.

    Article  CAS  PubMed  Google Scholar 

  22. Abdelnour SA, et al. The usefulness of retinoic acid supplementation during in vitro oocyte maturation for the in vitro embryo production of livestock: a review. Animals. 2019;9(8):561.

    Article  PubMed Central  Google Scholar 

  23. Yuba E, Harada A, Sakanishi Y, Kono K. Carboxylated hyperbranched poly (glycidol) s for preparation of pH-sensitive liposomes. J Control Release. 2011;149(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  24. Kim JH, Li Y, Kim MS, Kang SW, Jeong JH, Lee DS. Synthesis and evaluation of biotin-conjugated pH-responsive polymeric micelles as drug carriers. Int J Pharm. 2012;427(2):435–42.

    Article  CAS  PubMed  Google Scholar 

  25. Makhlof A, Tozuka Y, Takeuchi H. Design and evaluation of novel pH-sensitive chitosan nanoparticles for oral insulin delivery. Eur J Pharm Sci. 2011;42(5):445–51.

    Article  CAS  PubMed  Google Scholar 

  26. Luckanagul JA, Pitakchatwong C, Ratnatilaka Na Bhuket P, Muangnoi C, Rojsitthisak P, Chirachanchai S, et al. Chitosan-based polymer hybrids for thermo-responsive nanogel delivery of curcumin. Carbohydr Polym. 2018;181:1119–27.

    Article  CAS  PubMed  Google Scholar 

  27. Cheng Y-H, Ko YC, Chang YF, Huang SH, Liu CJL. Thermosensitive chitosan-gelatin-based hydrogel containing curcumin-loaded nanoparticles and latanoprost as a dual-drug delivery system for glaucoma treatment. Exp Eye Res. 2019;179:179–87.

    Article  CAS  PubMed  Google Scholar 

  28. Liu L, Yang H, Lou Y, Wu JY, Miao J, Lu XY, et al. Enhancement of oral bioavailability of salmon calcitonin through chitosan-modified, dual drug-loaded nanoparticles. Int J Pharm. 2019;557:170–7.

    Article  CAS  PubMed  Google Scholar 

  29. Motiei M, Kashanian S. Novel amphiphilic chitosan nanocarriers for sustained oral delivery of hydrophobic drugs. Eur J Pharm Sci. 2017;99:285–91.

    Article  CAS  PubMed  Google Scholar 

  30. Motiei M, Kashanian S, Lucia LA, Khazaei M. Intrinsic parameters for the synthesis and tuned properties of amphiphilic chitosan drug delivery nanocarriers. J Control Release. 2017;260:213–25.

    Article  CAS  PubMed  Google Scholar 

  31. Khan M, Ong ZY, Wiradharma N, Attia ABE, Yang YY. Advanced materials for co-delivery of drugs and genes in cancer therapy. Adv Healthc Mater. 2012;1(4):373–92.

    Article  CAS  PubMed  Google Scholar 

  32. Eldar-Boock A, Blau R, Ryppa C, Baabur-Cohen H, Many A, Vicent MJ, et al. Integrin-targeted nano-sized polymeric systems for paclitaxel conjugation: a comparative study. J Drug Target. 2017;25(9-10):829–44.

    Article  CAS  PubMed  Google Scholar 

  33. Komninou ER, et al. Effects of two types of melatonin-loaded nanocapsules with distinct supramolecular structures: polymeric (NC) and lipid-core nanocapsules (LNC) on bovine embryo culture model. PloS One. 2016;11(6).

  34. Feuer SK, Liu X, Donjacour A, Lin W, Simbulan RK, Giritharan G, et al. Use of a mouse in vitro fertilization model to understand the developmental origins of health and disease hypothesis. Endocrinology. 2014;155(5):1956–69.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aghaz F, Hajarian H, Shabankareh HK, Abdolmohammadi A. Effect of sericin supplementation in maturation medium on cumulus cell expansion, oocyte nuclear maturation, and subsequent embryo development in Sanjabi ewes during the breeding season. Theriogenology. 2015;84(9):1631–5.

    Article  CAS  PubMed  Google Scholar 

  36. Saeedabadi S, Abazari-Kia AH, Rajabi H, Parivar K, Salehi M. Melatonin improves the developmental competence of goat oocytes. Int J Fertil Steril. 2018;12(2):157–63.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods. 2001;25(4):402–8.

    Article  CAS  PubMed  Google Scholar 

  38. Sabzichi M, Mohammadian J, Ghorbani M, Saghaei S, Chavoshi H, Ramezani F, et al. Fabrication of all-trans-retinoic acid-loaded biocompatible precirol: a strategy for escaping dose-dependent side effects of doxorubicin. Colloids Surf B: Biointerfaces. 2017;159:620–8.

    Article  CAS  PubMed  Google Scholar 

  39. Gurler EB, Ergul NM, Ozbek B, Ekren N, Oktar FN, Haskoylu ME, et al. Encapsulated melatonin in polycaprolactone (PCL) microparticles as a promising graft material. Mater Sci Eng C. 2019;100:798–808.

    Article  CAS  Google Scholar 

  40. Huo M, Wang H, Zhang Y, Cai H, Zhang P, Li L, et al. Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. J Control Release. 2020;321:198–210.

    Article  CAS  PubMed  Google Scholar 

  41. Campos J, et al. Solid lipid nanoparticles (SLN): prediction of toxicity, metabolism, fate and physicochemical properties, in Nanopharmaceuticals. 2020, Elsevier. p. 1-15.

  42. Bohley M, Haunberger A, Goepferich AM. Intracellular availability of poorly soluble drugs from lipid nanocapsules. Eur J Pharm Biopharm. 2019;139:23–32.

    Article  CAS  PubMed  Google Scholar 

  43. Kemp JA, Shim MS, Heo CY, Kwon YJ. “Combo” nanomedicine: co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Adv Drug Deliv Rev. 2016;98:3–18.

    Article  CAS  PubMed  Google Scholar 

  44. He Q, et al. Tumor microenvironment responsive drug delivery systems. Asian J Pharm Sci. 2019.

  45. Levy R. Genetic regulation of preimplantation embryo survival, in International review of cytology. 2001, Elsevier. p. 1-37.

  46. Simon H-U, Haj-Yehia A, Levi-Schaffer F. Role of reactive oxygen species (ROS) in apoptosis induction. Apoptosis. 2000;5(5):415–8.

    Article  CAS  PubMed  Google Scholar 

  47. Park Y-G, Lee SE, Son YJ, Jeong SG, Shin MY, Kim WJ, et al. Antioxidant β-cryptoxanthin enhances porcine oocyte maturation and subsequent embryo development in vitro. Reprod Fertil Dev. 2018;30(9):1204–13.

    Article  CAS  PubMed  Google Scholar 

  48. Finucane DM, Bossy-Wetzel E, Waterhouse NJ, Cotter TG, Green DR. Bax-induced caspase activation and apoptosis via cytochromec release from mitochondria is inhibitable by Bcl-xL. J Biol Chem. 1999;274(4):2225–33.

    Article  CAS  PubMed  Google Scholar 

  49. Kim E, Jeon Y, Kim DY, Lee E, Hyun SH. Antioxidative effect of carboxyethylgermanium sesquioxide (Ge-132) on IVM of porcine oocytes and subsequent embryonic development after parthenogenetic activation and IVF. Theriogenology. 2015;84(2):226–36.

    Article  CAS  PubMed  Google Scholar 

  50. Bedaiwy MA, Mahfouz RZ, Goldberg JM, Sharma R, Falcone T, Abdel Hafez MF, et al. Relationship of reactive oxygen species levels in day 3 culture media to the outcome of in vitro fertilization/intracytoplasmic sperm injection cycles. Fertil Steril. 2010;94(6):2037–42.

    Article  CAS  PubMed  Google Scholar 

  51. Lan K-C, Lin YC, Chang YC, Lin HJ, Tsai YR, Kang HY. Limited relationships between reactive oxygen species levels in culture media and zygote and embryo development. J Assist Reprod Genet. 2019;36(2):325–34.

    Article  PubMed  Google Scholar 

  52. Byers SL, Wiles MV, Taft RA. Surgical oocyte retrieval (SOR): a method for collecting mature mouse oocytes without euthanasia. J Am Assoc Lab Anim Sci. 2009;48(1):44–51.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Processed data, evaluated data, and written the manuscript: F. A. and A. V.; performed experimental research and contributed to the study of the results: F. A. and M. K. H.; engaged in experimental work and analyzed data: A. V.; engaged in experimental work and updated manuscript: E. A. and S. K. H.; selected suitable animals, rated embryos, and gathered research data: F. A.; planned tests, analyzed data, and revised the manuscript: F. A., A. V., and M. K. H.

Corresponding authors

Correspondence to Asad Vaisi-Raygani or Mozafar Khazaei.

Ethics declarations

Ethics Approval

This research was carried out in compliance with the rules laid down by the Faculty of Medicine Ethics Committee of Kermanshah University of Medical Science (IR.KUMS.REC.1396.665) and Iran National Science Foundation (INSF, 97008908).

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghaz, F., Vaisi-Raygani, A., Khazaei, M. et al. Enhanced Synergistic-Antioxidant Activity of Melatonin and Tretinoin by Co-encapsulation into Amphiphilic Chitosan Nanocarriers: During Mice In Vitro Matured Oocyte/Morula-Compact Stage Embryo Culture Model. Reprod. Sci. 28, 3361–3379 (2021). https://doi.org/10.1007/s43032-021-00670-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00670-8

Keywords

Navigation