Skip to main content
Log in

Impact of Progesterone on Molecular Mechanisms of Preterm Premature Rupture of Membranes

  • Pregnancy: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The role and mechanisms of progesterone in preterm premature rupture of membranes (PPROM) remains unclear. This study aims to investigate the molecular mechanisms of action of progesterone in pre-labor full-term fetal amniotic membrane cells with and without stimulation by microbial, pro-inflammatory, or thrombogenic agents. Fetal amniotic membranes were collected from 30 women with a normal singleton pregnancy undergoing elective cesarean section at term prior to the onset of labor. The human amniotic epithelial cells isolated were pretreated with and without medroxyprogesterone acetate for 24 h. Then, cells were treated with and without TLR/NLR agonists, pro-inflammatory cytokines, or thrombin for 48 h. Semi-quantitative RT-PCR, Western blot, and caspase-3 activity measurement were performed. Progesterone stimulation decreased the expression of TLR2, TLR5, and Nod2 genes (alone and/or in combination with TLR/NLR agonists) and decreased the expression of IL-1β and IL-8 genes increased by stimulation with specific agonists for TLR2, TLR4, TLR5, Nod1, and Nod2. Moreover, progesterone decreased thrombin-induced IL-8 gene expression. Progesterone also decreased expression of Bax and Bid proteins (pro-apoptotic factors) increased by stimulation with pro-inflammatory cytokines (TNF-α, NGAL, IL-18, and IL-1β) and thrombin. Progesterone stimulation alone as well as co-stimulation with TNF-α, NGAL, IL-18, IL-1β, or thrombin with progesterone either increased, decreased, or did not change the expression of Bcl-2, Bcl-XL, or XIAP genes (anti-apoptotic factors). These data suggest progesterone plays protective roles against PPROM through anti-microbial, anti-inflammatory, and anti-thrombogenic actions on human-term fetal amniotic membrane cells. Progesterone alters pro-inflammatory cytokine- and thrombin-induced apoptosis by controlling the expression of pro-apoptotic and anti-apoptotic factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of Data and Material

Not applicable

Code Availability

Not applicable

References

  1. Medina TM, Hill DA. Preterm premature rupture of membranes: diagnosis and management. Am Fam Physician. 2006;73(4):659–64.

    PubMed  Google Scholar 

  2. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371(9606):75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Menon R, Richardson LS. Preterm prelabor rupture of the membranes: a disease of the fetal membranes. Semin Perinatol. 2017;41(7):409–19.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Lei H, Furth EE, Kalluri R, Chiou T, Tilly KI, Tilly JL, et al. A program of cell death and extracellular matrix degradation is activated in the amnion before the onset of labor. J Clin Invest. 1996;98(9):1971–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Fortunato SJ, Menon R, Bryant C, Lombardi SJ. Programmed cell death (apoptosis) as a possible pathway to metalloproteinase activation and fetal membrane degradation in premature rupture of membranes. Am J Obstet Gynecol. 2000;182(6):1468–76.

    Article  CAS  PubMed  Google Scholar 

  6. Fortunato SJ, Menon R, Lombardi SJ. TNF-α promotes caspase activation and apoptosis in human fetal membranes. J Assist Reprod Genet. 2002;19(4):201–4.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shobokshi A, Shaarawy M. Maternal serum and amniotic fluid cytokines in patients with preterm premature rupture of membranes with and without intrauterine infection. Int J Gynecol Obstet. 2002;79(3):209–15.

    Article  CAS  Google Scholar 

  8. Jacobsson B, Mattsby-Baltzer I, Andersch B, Bokström H, Holst RM, Nikolaitchouk N, et al. Microbial invasion and cytokine response in amniotic fluid in a Swedish population of women with preterm prelabor rupture of membranes. Acta Obstet Gynecol Scand. 2003;82(5):423–31.

    Article  PubMed  Google Scholar 

  9. George RB, Kalish J, Yonish B, Murtha AP. Apoptosis in the chorion of fetal membranes in preterm premature rupture of membranes. Am J Perinatol. 2008;25(1):29–32.

    Article  PubMed  Google Scholar 

  10. Lannon SM, Vanderhoeven JP, Eschenbach DA, Gravett MG, Adams Waldorf KM. Synergy and interactions among biological pathways leading to preterm premature rupture of membranes. Reprod Sci. 2014;21(10):1215–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Kumar D, Fung W, Moore RM, Pandey V, Fox J, Stetzer B, et al. Proinflammatory cytokines found in amniotic fluid induce collagen remodeling, apoptosis, and biophysical weakening of cultured human fetal membranes. Biol Reprod. 2006;74(1):29–34.

    Article  PubMed  CAS  Google Scholar 

  12. Kumar D, Schatz F, Moore RM, Mercer BM, Rangaswamy N, Mansour JM, et al. The effects of thrombin and cytokines upon the biomechanics and remodeling of isolated amnion membrane, in vitro. Placenta. 2011;32(3):206–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lockwood CJ, Toti P, Arcuri F, Paidas M, Buchwalder L, Krikun G, et al. Mechanisms of abruption induced premature rupture of the fetal membranes: thrombin enhanced interleukin-8 expression in term decidua. Am J Pathol. 2005;167(5):1443–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lockwood CJ, Paidas M, Murk WK, Kayisli UA, Gopinath A, Huang SJ, et al. Involvement of human decidual cell-expressed tissue factor in uterine hemostasis and abruption. Thromb Res. 2009 Nov;124(5):516–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kim YM, Romero R, Chaiworapongsa T, Kim GJ, Kim MR, Kuivaniemi H, et al. Toll-like receptor-2 and -4 in the chorioamniotic membranes in spontaneous labor at term and in preterm parturition that are associated with chorioamnionitis. Am J Obstet Gynecol. 2004;191:1346–55.

    Article  CAS  PubMed  Google Scholar 

  16. Gillaux C, Méhats C, Vaiman D, Cabrol D, Breuiller-Fouché M. Functional screening of TLRs in human amniotic epithelial cells. J Immunol. 2011 Sep 1;187(5):2766–74.

    Article  CAS  PubMed  Google Scholar 

  17. Lappas M. NOD1 and NOD2 regulate proinflammatory and prolabor mediators in human fetal membranes and myometrium via nuclear factor-kappa B. Biol Reprod. 2013;89:14.

    Article  PubMed  CAS  Google Scholar 

  18. Lim R, Barker G, Lappas M. The TLR2 ligand FSL-1 and the TLR5 ligand flagellin mediate pro-inflammatory and pro-labour response via MyD88/TRAF6/NF-κB dependent signalling. Am J Reprod Immunol. 2014;71(5):401–17.

    Article  CAS  PubMed  Google Scholar 

  19. Kumar N, Nandula P, Menden H, Jarzembowski J, Sampath V. Placental TLR/NLR expression signatures are altered with gestational age and inflammation. J Matern Fetal Neonatal Med. 2017;30(13):1588–95.

    Article  CAS  PubMed  Google Scholar 

  20. Moroi H, Kotani T, Miki R, Tsuda H, Mizuno M, Ito Y, et al. The expression of Toll-like receptor 5 in preterm histologic chorioamnionitis. J Clin Biochem Nutr. 2018;62(1):63–7.

    Article  CAS  PubMed  Google Scholar 

  21. Olmos-Ortiz A, Flores-Espinosa P, Mancilla-Herrera I, Vega-Sánchez R, Díaz L, Zaga-Clavellina V. Innate immune cells and Toll-like receptor-dependent responses at the maternal-fetal interface. Int J Mol Sci. 2019;20(15):3654.

    Article  CAS  PubMed Central  Google Scholar 

  22. Kumar H, Kawai T, Akira S. Pathogen recognition by the innate immune system. Int Rev Immunol. 2011;30(1):16–34.

    Article  CAS  PubMed  Google Scholar 

  23. Beijar EC, Mallard C, Powell TL. Expression and subcellular localization of TLR-4 in term and first trimester human placenta. Placenta. 2006;27(2-3):322–6.

    Article  CAS  PubMed  Google Scholar 

  24. Costello MJ, Joyce SK, Abrahams VM. NOD protein expression and function in first trimester trophoblast cells. Am J Reprod Immunol. 2007;57(1):67–80.

    Article  CAS  PubMed  Google Scholar 

  25. Zhou S, Yu P, Guan L, Xing A, Liu S, Xiong Q, et al. NOD1 expression elicited by iE-DAP in first trimester human trophoblast cells and its potential role in infection-associated inflammation. Eur J Obstet Gynecol Reprod Biol. 2013;170(2):318–23.

    Article  CAS  PubMed  Google Scholar 

  26. Smrtka MP, Feng L, Murtha AP, Grotegut CA. Thrombin-induced inflammation in human decidual cells is not affected by heparin. Reprod Sci. 2017;24(8):1154–63.

    Article  CAS  PubMed  Google Scholar 

  27. Kumar D, Springel E, Moore RM, et al. Progesterone inhibits in vitro fetal membrane weakening. Am J Obstet Gynecol. 2015;213(4):520.e1–9.

    Article  CAS  Google Scholar 

  28. Kumar D, Moore RM, Mercer BM, et al. In an in-vitro model using human fetal membranes, 17-α hydroxyprogesterone caproate is not an optimal progestogen for inhibition of fetal membrane weakening. Am J Obstet Gynecol. 2017;217(6):695.e1–695.e14.

    Article  CAS  Google Scholar 

  29. FDA Approves Drug to Reduce Preterm Birth Risk . https://www.nichd.nih.gov/news/releases/Pages/021611-FDA-approves-drug.aspx. Accessed September 20, 2020.

  30. Committee on Practice Bulletins—Obstetrics, American College of Obstetricians and Gynecologists. Practice Bulletin No. 130: Prediction and prevention of preterm birth. Obstet Gynecol. 2012;120(4):964–73.

    Article  Google Scholar 

  31. Coleman S, Wallace L, Alexander J, Istwan N. Recurrent preterm birth in women treated with 17 α-hydroxyprogesterone caproate: the contribution of risk factors in the penultimate pregnancy. J Matern Fetal Neonatal Med. 2012;25(7):1034–8.

    Article  CAS  PubMed  Google Scholar 

  32. Luo G, Abrahams VM, Tadesse S, Funai EF, Hodgson EJ, Gao J, et al. Progesterone inhibits basal and TNF-alpha-induced apoptosis in fetal membranes: a novel mechanism to explain progesterone-mediated prevention of preterm birth. Reprod Sci. 2010;17(6):532–9.

    Article  CAS  PubMed  Google Scholar 

  33. Flores-Espinosa P, Pineda-Torres M, Vega-Sánchez R, Estrada-Gutiérrez G, Espejel-Nuñez A, Flores-Pliego A, et al. Progesterone elicits an inhibitory effect upon LPS-induced innate immune response in pre-labor human amniotic epithelium. Am J Reprod Immunol. 2014;71(1):61–72.

    Article  CAS  PubMed  Google Scholar 

  34. Pineda-Torres M, Flores-Espinosa P, Espejel-Nunez A, Estrada-Gutierrez G, Flores-Pliego A, Maida-Claros R, et al. Evidence of an immunosuppressive effect of progesterone upon in vitro secretion of proinflammatory and prodegradative factors in a model of choriodecidual infection. BJOG. 2015;122(13):1798–807.

    Article  CAS  PubMed  Google Scholar 

  35. Wang Y, Abrahams VM, Luo G, Norwitz NG, Snegovskikh VV, Ng SW, et al. Progesterone inhibits apoptosis in fetal membranes by altering expression of both pro- and antiapoptotic proteins. Reprod Sci. 2018;25(8):1161–7.

    Article  PubMed  CAS  Google Scholar 

  36. Motedayyen H, Esmaeil N, Tajik N, Khadem F, Ghotloo S, Khani B, et al. Method and key points for isolation of human amniotic epithelial cells with high yield, viability and purity. BMC Res Notes. 2017;10(1):552.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Schneider CA, Rasband WS, Eliceiri KW. NIH Image to ImageJ: 25 years of image analysis. Nat Methods. 2012;9(7):671–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Lappas M. NOD1 and NOD2 regulate proinflammatory and prolabor mediators in human fetal membranes and myometrium via nuclear factor-kappa B. Biol Reprod. 2013 Jul 18;89(1):14.

    Article  PubMed  CAS  Google Scholar 

  39. Hoang M, Potter JA, Gysler SM, Han CS, Guller S, Norwitz ER, et al. Human fetal membranes generate distinct cytokine profiles in response to bacterial Toll-like receptor and nod-like receptor agonists. Biol Reprod. 2014;90(2):39.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Strande JL, Phillips SA. Thrombin increases inflammatory cytokine and angiogenic growth factor secretion in human adipose cells in vitro. J Inflamm (Lond). 2009;6:4.

    Article  Google Scholar 

  41. Westphal D, Dewson G, Czabotar PE, Kluck RM. Molecular biology of Bax and Bak activation and action. Biochim Biophys Acta. 2011;1813(4):521–31.

    Article  CAS  PubMed  Google Scholar 

  42. Lopez JJ, Salido GM, Pariente JA, Rosado JA. Thrombin induces activation and translocation of Bid, Bax and Bak to the mitochondria in human platelets. J Thromb Haemost. 2008;6(10):1780–8.

    Article  CAS  PubMed  Google Scholar 

  43. Wajant H, Pfizenmaier K, Scheurich P. Tumor necrosis factor signaling. Cell Death Differ. 2003;10(1):45–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2017R1A2B1004893).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: B.L., E.N., S.O.H., and H.J.L.; methodology: B.L., E.N., and H.J.L.; formal analysis and investigation: B.L., I.S.H., J.Y.W., and H.J.L.; writing—original draft preparation: B.L.; writing—review and editing: B.L., E.N., I.S.H., J.Y.W., S.O.H., and H.J.L.; funding acquisition: H.J.L.; resources: B.L., and H.J.L.; supervision: S.O.H., and H.J.L

Corresponding author

Correspondence to Hee Joong Lee.

Ethics declarations

Ethics Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. This study was approved by the Institutional Review Board of The Catholic Medical Center at the Catholic University of Korea (No. UC19TOSI0123).

Consent to Participate

Informed consent was obtained from all individual participants included in the study.

Consent for Publication

Not applicable

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

Effects of pro-inflammatory cytokines and thrombin on caspase-3 activity in hAECs with and without progesterone A) TNF-α, B) NGAL, C) IL-18, D) IL-1β, and E) thrombin were used as experimental cytokines. The Y axis is expressed as mean ± SD of experiments from six donors. NS, nonsignificant; SD, standard deviation. (PDF 305 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, B., Norwitz, E., Hwang, I.S. et al. Impact of Progesterone on Molecular Mechanisms of Preterm Premature Rupture of Membranes. Reprod. Sci. 28, 3137–3146 (2021). https://doi.org/10.1007/s43032-021-00646-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00646-8

Keywords

Navigation