Skip to main content
Log in

Protective Effects of Fisetin in the Mice Induced by Long-Term Scrotal Hyperthermia

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Exposure to heat in the male reproductive system can lead to transient periods of partial or complete infertility. The current study aimed to examine the beneficial effects of  Fisetin against spermatogenic disorders in mice affected by long-term scrotal hyperthermia. For this purpose, hyperthermia was induced daily by exposure to the temperature of 43 °C for 20 min for 5 weeks. Except for the Healthy group, six other groups were exposed to heat stress: two treated groups including Preventive and Curative which received oral administration of fisetin (10 mg/kg/day) starting immediately before heat exposure and 15 consecutive days after the end of the heat exposure, respectively. And for each treated group, two groups including Positive Control (Pre/Cur+PC group) and vehicle (Pre/Cur+DMSO group) were considered. Our results showed that the testicular volume; the density of spermatogonia, primary spermatocyte, round spermatid, and Sertoli and Leydig cells; and sperm parameters, as well biochemical properties of the testis tissue, were remarkably higher in both Preventive and Curative groups compared to the other hyperthermia-induced groups and were highest in Preventive ones. Unlike the c-kit gene transcript which was significantly increased in the  Fisetin treatment groups (specially the Preventive group), the expression of HSP72 and NF-kβ genes, Caspase3 protein, and DFI in sperm cells were significantly more decreased in Preventive and Curative groups compared to other hyperthermia-induced groups and were lowest in Preventive ones. Overall,  Fisetin exerts preventive and curative effects against spermatogenic disorders induced by long-term scrotal hyperthermia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Leng J, Hou J-g, Fu C-l, Ren S, Jiang S, Wang Y-p, et al. Platycodon grandiflorum Saponins attenuate scrotal heat-induced spermatogenic damage via inhibition of oxidative stress and apoptosis in mice. J Funct Foods. 2019;54:479–88.

    Article  CAS  Google Scholar 

  2. Mg S, Brown J, Yazdani A. Antioxidants for male subfertility. Cochrane Database Syst Rev. 2011;19.

  3. Durairajanayagam D, Sharma RK, du Plessis SS, Agarwal A. Testicular heat stress and sperm quality. Male Infertility Springer; 2014. p. 105-125.

  4. Sun J, Yin B, Tang S, Zhang X, Xu J, Bao E. Vitamin C mitigates heat damage by reducing oxidative stress, inducing HSP expression in TM4 Sertoli cells. Mol Reprod Dev. 2019;86(6):673–85.

    Article  CAS  PubMed  Google Scholar 

  5. Durairajanayagam D, Agarwal A, Ong C. Causes, effects and molecular mechanisms of testicular heat stress. Reprod BioMed Online. 2015;30(1):14–27.

    Article  CAS  PubMed  Google Scholar 

  6. Kumar Roy V, Marak TR, Gurusubramanian G. Alleviating effect of Mallotus roxburghianus in heat-induced testicular dysfunction in Wistar rats. Pharm Biol. 2016;54(5):905–18.

    Article  CAS  PubMed  Google Scholar 

  7. Santi D, Magnani E, Michelangeli M, Grassi R, Vecchi B, Pedroni G, et al. Seasonal variation of semen parameters correlates with environmental temperature and air pollution: a big data analysis over 6 years. Environ Pollut. 2018;235:806–13.

    Article  CAS  PubMed  Google Scholar 

  8. Hamerezaee M, Dehghan SF, Golbabaei F, Fathi A, Barzegar L, Heidarnejad N. Assessment of semen quality among workers exposed to heat stress: a cross-sectional study in a Steel Industry. Saf Health Work. 2018;9(2):232–5.

    Article  PubMed  Google Scholar 

  9. Al-Otaibi ST. Male infertility among bakers associated with exposure to high environmental temperature at the workplace. J Taibah Univ Medical Sci. 2018;13(2):103–7.

    Google Scholar 

  10. Jung A, Strauss P, Lindner H-J, Schuppe H-C. Influence of heating car seats on scrotal temperature. Fertil Steril. 2008;90(2):335–9.

    Article  PubMed  Google Scholar 

  11. Boni R. Heat stress, a serious threat to reproductive function in animals and humans. Mol Reprod Dev. 2019;86(10):1307–23.

    Article  CAS  PubMed  Google Scholar 

  12. Ilacqua A, Izzo G, Emerenziani GP, Baldari C, Aversa A. Lifestyle and fertility: the influence of stress and quality of life on male fertility. Reprod Biol Endocrinol. 2018;16(1):115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. EVENSON DP, JOST LK, CORZETT M, BALHORN R. Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl. 2000;21(5):739–46.

    CAS  PubMed  Google Scholar 

  14. Munkelwitz R, GILBERT BR. Are boxer shorts really better? A critical analysis of the role of underwear type in male subfertility. J Urol. 1998;160(4):1329–33.

    Article  CAS  PubMed  Google Scholar 

  15. Li Y, Zhou Q, Hively R, Yang L, Small C, Griswold MD. Differential gene expression in the testes of different murine strains under normal and hyperthermic conditions. J Androl. 2009;30(3):325–37.

    Article  PubMed  CAS  Google Scholar 

  16. Patil S, Patil A, Patil M, Nikam P, Mahadik Y, Londhe S, et al. Testicular hyperthermia in Rattus norvegicus: focus on gamatocytic alterations. Int J Curr Microbiol App Sci. 2014;3(6):93–103.

    Google Scholar 

  17. Paul C, Murray AA, Spears N, Saunders PT. A single, mild, transient scrotal heat stress causes DNA damage, subfertility and impairs formation of blastocysts in mice. Reproduction. 2008;136(1):73–84.

    Article  CAS  PubMed  Google Scholar 

  18. Afshar A, Aliaghaei A, Nazarian H, Abbaszadeh H-A, Naserzadeh P, Fathabadi FF, et al. Curcumin-loaded iron particle improvement of spermatogenesis in azoospermic mouse induced by long-term scrotal hyperthermia. Reprod Sci. 2020:1–10.

  19. Agarwal A, Hamada A, Esteves SC. Insight into oxidative stress in varicocele-associated male infertility: part 1. Nat Rev Urol. 2012;9(12):678–90.

    Article  PubMed  CAS  Google Scholar 

  20. Shiraishi K, Matsuyama H, Takihara H. Pathophysiology of varicocele in male infertility in the era of assisted reproductive technology. Int J Urol. 2012;19(6):538–50.

    Article  CAS  PubMed  Google Scholar 

  21. Paul C, Teng S, Saunders PT. A single, mild, transient scrotal heat stress causes hypoxia and oxidative stress in mouse testes, which induces germ cell death. Biol Reprod. 2009;80(5):913–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nasiry D, Ahmadvand H, Amiri FT, Akbari E. Protective effects of methanolic extract of Juglans regia L. leaf on streptozotocin-induced diabetic peripheral neuropathy in rats. BMC Complement Altern Med. 2017;17(1):1–11.

    Article  CAS  Google Scholar 

  23. Gutiérrez-Venegas G, Contreras-Sánchez A, Ventura-Arroyo JA. Anti-inflammatory activity of fisetin in human gingival fibroblasts treated with lipopolysaccharide. J Asian Nat Prod Res. 2014;16(10):1009–17.

    Article  PubMed  CAS  Google Scholar 

  24. Khan N, Syed DN, Ahmad N, Mukhtar H. Fisetin: a dietary antioxidant for health promotion. Antioxid Redox Signal. 2013;19(2):151–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Kim JA, Lee S, Kim D-E, Kim M, Kwon B-M, Han DC. Fisetin, a dietary flavonoid, induces apoptosis of cancer cells by inhibiting HSF1 activity through blocking its binding to the hsp70 promoter. Carcinogenesis. 2015;36(6):696–706.

    Article  CAS  PubMed  Google Scholar 

  26. Hanneken A, Lin F-F, Johnson J, Maher P. Flavonoids protect human retinal pigment epithelial cells from oxidative-stress–induced death. Invest Ophthalmol Vis Sci. 2006;47(7):3164–77.

    Article  PubMed  Google Scholar 

  27. Naeimi AF, Alizadeh M. Antioxidant properties of the flavonoid fisetin: an updated review of in vivo and in vitro studies. Trends Food Sci Technol. 2017;70:34–44.

    Article  CAS  Google Scholar 

  28. Prasath GS, Subramanian SP. Antihyperlipidemic effect of fisetin, a bioflavonoid of strawberries, studied in streptozotocin-induced diabetic rats. J Biochem Mol Toxicol. 2014;28(10):442–9.

    Article  CAS  PubMed  Google Scholar 

  29. Ziaeipour S, Rezaei F, Piryaei A, Abdi S, Moradi A, Ghasemi A, et al. Hyperthermia versus busulfan: finding the effective method in animal model of azoospermia induction. Andrologia. 2019;51(11):e13438.

    Article  PubMed  Google Scholar 

  30. Garg S, Malhotra RK, Khan SI, Sarkar S, Susrutha P, Singh V, et al. Fisetin attenuates isoproterenol-induced cardiac ischemic injury in vivo by suppressing RAGE/NF-κB mediated oxidative stress, apoptosis and inflammation. Phytomedicine. 2019;56:147–55.

    Article  CAS  PubMed  Google Scholar 

  31. Koneru M, Sahu BD, Kumar JM, Kuncha M, Kadari A, Kilari EK, et al. Fisetin protects liver from binge alcohol-induced toxicity by mechanisms including inhibition of matrix metalloproteinases (MMPs) and oxidative stress. J Funct Foods. 2016;22:588–601.

    Article  CAS  Google Scholar 

  32. Pérez-Crespo M, Pintado B, Gutiérrez-Adán A. Scrotal heat stress effects on sperm viability, sperm DNA integrity, and the offspring sex ratio in mice. Molecular Reproduction and Development: Incorporating Gamete Research. 2008;75(1):40–7.

    Article  CAS  Google Scholar 

  33. Shadmehr S, Tabatabaei SRF, Hosseinifar S, Tabandeh MR, Amiri A. Attenuation of heat stress-induced spermatogenesis complications by betaine in mice. Theriogenology. 2018;106:117–26.

    Article  CAS  PubMed  Google Scholar 

  34. Halder S, Sarkar M, Dey S, Bhunia SK, Koley AR, Giri B. Protective effects of red grape (Vitis vinifera) juice through restoration of antioxidant defense, endocrine swing and Hsf1, Hsp72 levels in heat stress induced testicular dysregulation of Wister rat. J Therm Biol. 2018;71:32–40.

    Article  CAS  PubMed  Google Scholar 

  35. Tavares R, Silva A, Lourenco B, Almeida-Santos T, Sousa A, Ramalho-Santos J. Evaluation of human sperm chromatin status after selection using a modified Diff-Quik stain indicates embryo quality and pregnancy outcomes following in vitro fertilization. Andrology. 2013;1(6):830–7.

    Article  CAS  PubMed  Google Scholar 

  36. Nasiry D, Khalatbary AR, Ahmadvand H, Talebpour Amiri FB. Effects of Juglans regia L. leaf extract supplementation on testicular functions in diabetic rats. Biotech Histochem. 2020:1-7.

  37. Howard V, Reed M. Unbiased stereology: three-dimensional measurement in microscopy. Garland Science: UK; 2004.

    Book  Google Scholar 

  38. Ziaeipour S, Ahrabi B, Naserzadeh P, Aliaghaei A, Sajadi E, Abbaszadeh H-A, et al. Effects of Sertoli cell transplantation on spermatogenesis in azoospermic mice. Cell Physiol Biochem. 2019;52:421–34.

    Article  CAS  PubMed  Google Scholar 

  39. Rosa I, Marini M, Guasti D, Ibba-Manneschi L, Manetti M. Morphological evidence of telocytes in human synovium. Sci Rep. 2018;8(1):1–10.

    Article  Google Scholar 

  40. Marini M, Rosa I, Guasti D, Gacci M, Sgambati E, Ibba-Manneschi L, et al. Reappraising the microscopic anatomy of human testis: identification of telocyte networks in the peritubular and intertubular stromal space. Sci Rep. 2018;8(1):1–11.

    Article  Google Scholar 

  41. Kokubu D, Ooba R, Abe Y, Ishizaki H, Yoshida S, Asano A, et al. Angelica keiskei (Ashitaba) powder and its functional compound xanthoangelol prevent heat stress-induced impairment in sperm density and quality in mouse testes. J Reprod Dev. 2019:2018–141.

  42. Ahmadi S, Bashiri R, Ghadiri-Anari A, Nadjarzadeh A. Antioxidant supplements and semen parameters: an evidence based review. J Reprod Biomed. 2016;14(12):729–36.

    CAS  Google Scholar 

  43. Asadi N, Bahmani M, Kheradmand A, Rafieian-Kopaei M. The impact of oxidative stress on testicular function and the role of antioxidants in improving it: a review. J Clin Diagn Res. 2017;11(5):IE01–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Hansen PJ. Effects of heat stress on mammalian reproduction. Philosophical Transactions of the Royal Society B: Biological Sciences. 2009;364(1534):3341–50.

    Article  Google Scholar 

  45. Park S, Yon JM, Lin C, Gwon L, Lee JG, Baek IJ, et al. Capsaicin attenuates spermatogenic cell death induced by scrotal hyperthermia through its antioxidative and anti-apoptotic activities. Andrologia. 2017;49(5):e12656.

    Article  CAS  Google Scholar 

  46. Rao M, Zhao X-L, Yang J, Hu S-F, Lei H, Xia W, et al. Effect of transient scrotal hyperthermia on sperm parameters, seminal plasma biochemical markers, and oxidative stress in men. Asian J Androl. 2015;17(4):668–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Hamilton TRdS, Siqueira AFP, Castro LSd, Mendes CM, Delgado JdC, de Assis PM et al. Effect of heat stress on sperm DNA: protamine assessment in ram spermatozoa and testicle. Oxidative Med Cell Longev. 2018;2018.

  48. Kanter M, Aktas C, Erboga M. Heat stress decreases testicular germ cell proliferation and increases apoptosis in short term: an immunohistochemical and ultrastructural study. Toxicol Ind Health. 2013;29(2):99–113.

    Article  CAS  PubMed  Google Scholar 

  49. Liu X-Y, Zhang S-X, Zhang N, Hao C-F, Zhuang L-L, Huang X. Effects of apigenin on scrotal heat-induced damage in the mice testis. Int J Clin Exp Med. 2016;9(3):6342–7.

    Google Scholar 

  50. Naseer Z, Ahmad E, Aksoy M, Epikmen E. Impact of quercetin supplementation on testicular functions in summer heat-stressed rabbits. World Rabbit Sci. 2020;28(1):19–27.

    Article  Google Scholar 

  51. Aktas C, Kanter M. A morphological study on Leydig cells of scrotal hyperthermia applied rats in short-term. J Mol Histol. 2009;40(1):31–9.

    Article  PubMed  Google Scholar 

  52. Li Y, Huang Y, Piao Y, Nagaoka K, Watanabe G, Taya K, et al. Protective effects of nuclear factor erythroid 2-related factor 2 on whole body heat stress-induced oxidative damage in the mouse testis. Reprod Biol Endocrinol. 2013;11(1):23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Ngoula F, Lontio FA, Tchoffo H, Tsague FPM, Djeunang R-M, Vemo BN, et al. Heat induces oxidative stress: reproductive organ weights and serum metabolite profile, testes structure, and function impairment in male cavy (Cavia porcellus). Front Vet Sci. 2020;7.

  54. Delkhosh A, Shoorei H, Niazi V, Delashoub M, Gharamaleki MN, Ahani-Nahayati M, et al. Coenzyme Q10 ameliorates inflammation, oxidative stress, and testicular histopathology in rats exposed to heat stress. Hum Exp Toxicol. 2020;0960327120940366.

  55. Hussein AS, Ragab AO, El Senosi AY, Abdel-Muttalib AS. Biochemical effect of fisetinon experimentally induced liver damage in rats. Benha Veterinary Medical Journal. 2018;34(3):98–107.

    Article  Google Scholar 

  56. Sinha R, Srivastava S, Joshi A, Joshi UJ, Govil G. In-vitro anti-proliferative and anti-oxidant activity of galangin, fisetin and quercetin: role of localization and intermolecular interaction in model membrane. Eur J Med Chem. 2014;79:102–9.

    Article  CAS  PubMed  Google Scholar 

  57. Piao MJ, Kim KC, Chae S, Keum YS, Kim HS, Hyun JW. Protective effect of fisetin (3, 7, 3', 4'-tetrahydroxyflavone) against γ-irradiation-induced oxidative stress and cell damage. Biomol Ther. 2013;21(3):210–5.

    Article  CAS  Google Scholar 

  58. Shahat A, Rizzoto G. Kastelic J. Theriogenology: Amelioration of heat stress-induced damage to testes and sperm quality; 2020.

    Google Scholar 

  59. Kaur S, Bansal M. Protective role of dietary-supplemented selenium and vitamin E in heat-induced apoptosis and oxidative stress in mice testes. Andrologia. 2015;47(10):1109–19.

    Article  CAS  PubMed  Google Scholar 

  60. Lin C, Choi YS, Park SG, Gwon LW, Lee JG, Yon J-M, et al. Enhanced protective effects of combined treatment with β-carotene and curcumin against hyperthermic spermatogenic disorders in mice. Biomed Res Int. 2016;2016:1–8.

    Google Scholar 

  61. Lee JS, Lee J-S, Cha KJ, Kim D-E, Lee D, Jung SY, et al. Fisetin protects H9c2 cardiomyoblast cells against H2O2-induced apoptosis through Akt and ERK1/2 signaling pathways. Mol Cell Toxicol. 2018;14(2):183–92.

    Article  CAS  Google Scholar 

  62. Naseer Z, Ahmad E, Şahiner HS, Epikmen ET, Fiaz M, Yousuf MR, et al. Dietary quercetin maintains the semen quality in rabbits under summer heat stress. Theriogenology. 2018;122:88–93.

    Article  CAS  PubMed  Google Scholar 

  63. Kumar SS, Manna K, Das A. Tender coconut water attenuates heat stress-induced testicular damage through modulation of the NF-κB and Nrf2 pathways. Food Funct. 2018;9(10):5463–79.

    Article  CAS  PubMed  Google Scholar 

  64. Léotoing L, Wauquier F, Guicheux J, Miot-Noirault E, Wittrant Y, Coxam V. The polyphenol fisetin protects bone by repressing NF-κB and MKP-1-dependent signaling pathways in osteoclasts. PLoS One. 2013;8(7):e68388.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Prasath GS, Subramanian SP. Fisetin, a tetra hydroxy flavone recuperates antioxidant status and protects hepatocellular ultrastructure from hyperglycemia mediated oxidative stress in streptozotocin induced experimental diabetes in rats. Food Chem Toxicol. 2013;59:249–55.

    Article  CAS  PubMed  Google Scholar 

  66. Prasath GS, Sundaram CS, Subramanian SP. Fisetin averts oxidative stress in pancreatic tissues of streptozotocin-induced diabetic rats. Endocrine. 2013;44(2):359–68.

    Article  CAS  PubMed  Google Scholar 

  67. Sandireddy R, Yerra VG, Komirishetti P, Areti A, Kumar A. Fisetin imparts neuroprotection in experimental diabetic neuropathy by modulating Nrf2 and NF-κB pathways. Cell Mol Neurobiol. 2016;36(6):883–92.

    Article  CAS  PubMed  Google Scholar 

  68. Sahu BD, Kalvala AK, Koneru M, Kumar JM, Kuncha M, Rachamalla SS, et al. Ameliorative effect of fisetin on cisplatin-induced nephrotoxicity in rats via modulation of NF-κB activation and antioxidant defence. PLoS One. 2014;9(9):e105070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Qin Q, Liu J, Ma Y, Wang Y, Zhang F, Gao S, et al. Aberrant expressions of stem cell factor/c-KIT in rat testis with varicocele. J Formos Med Assoc. 2017;116(7):542–8.

    Article  CAS  PubMed  Google Scholar 

  70. Sikarwar AP, Rambabu MK, Reddy K. Differential regulation of gene expression in mouse spermatogonial cells after blocking c-kit-SCF interaction with RNAi. Journal of Rnai and Gene Silencing: an International Journal of RNA and Gene Targeting Research. 2008;4(1):302–11.

    CAS  Google Scholar 

  71. Sikarwar AP, Reddy K. siRNA-mediated silencing of c-kit in mouse primary spermatogonial cells induces cell cycle arrest. Oligonucleotides. 2008;18(2):145–60.

    Article  CAS  PubMed  Google Scholar 

  72. Ilkhani S, Moradi A, Aliaghaei A, Norouzian M, Abdi S, Rojhani E et al. Spatial arrangement of testicular cells disrupted by transient scrotal hyperthermia and subsequent impairment of spermatogenesis. Andrologia. 2020:e13664.

Download references

Acknowledgements

This article is based on the thesis by Mrs. Maryam Piraniat the School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran (Registration No. 19778).

Funding

The current project was financially supported by Shahid Beheshti University of Medical Sciences (Grant No.19778), Tehran, Iran.

Author information

Authors and Affiliations

Authors

Contributions

M.P. contributed to the study design and performed the experiments and data acquisition and analysis, as well as drafting of the manuscript. M.A.A. contributed to the study concept and design and interpretation of the data and designed stereological assessments and analyses and preparation of the draft of the manuscript. A.P. supervised the study, provided financial support, and contributed to the study concept and design, interpretation of data, and editing and final approval of the manuscript. All authors reviewed and commented on the manuscript and approved the final manuscript.

Corresponding author

Correspondence to Zahra Shams Mofarahe.

Ethics declarations

Ethics Approval

All animal procedures and informed consent were approved by the Institutional Ethics Committee of Shahid Beheshti University of Medical Sciences, Tehran (code no. IR.SBMU.MSP.REC.1398.366).

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pirani, M., Novin, M.G., Abdollahifar, MA. et al. Protective Effects of Fisetin in the Mice Induced by Long-Term Scrotal Hyperthermia. Reprod. Sci. 28, 3123–3136 (2021). https://doi.org/10.1007/s43032-021-00615-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00615-1

Keywords

Navigation