Skip to main content
Log in

lncRNA HLA Complex Group 18 (HCG18) Facilitated Cell Proliferation, Invasion, and Migration of Prostate Cancer Through Modulating miR-370-3p/DDX3X Axis

  • Male Reproduction: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Long non-coding RNAs (lncRNAs) have been reported to exert critical functions in the malignant development of many cancers. lncRNA HLA complex group 18 (HCG18) has been confirmed to have a promoting effect on various cancers. However, whether HCG18 functions in PC is still unclear. Therefore, the current study aimed at unveiling the role of HCG18 in PC progression and its regulatory mechanism on the biological behaviors of PC. Here, RT-qPCR was utilized to detect HCG18 expression, and then, functional experiments were conducted to verify the effects of HCG18 on PC cell proliferation, migration, invasion, and apoptosis. According to the results, HCG18 was significantly up-regulated in PC cells and it facilitated cell proliferation, migration, and invasion in PC. Furthermore, a series of mechanism experiments were carried out to verify the relationship among HCG18, miR-370-3p, and DEAD-box helicase 3 X-linked(DDX3X) in PC cells. Final rescue assays showed that DDX3X overexpression could reverse the inhibitory function of silencing HCG18 on PC progression. In summary, our study showed that lncRNA HCG18 accelerated cell proliferation, invasion, and migration of PC via up-regulating DDX3X through sponging miR-370-3p, providing a novel finding about PC-related regulatory mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Scher HI, Solo K, Valant J, Todd MB, Mehra M. Prevalence of prostate cancer clinical states and mortality in the United States: estimates using a dynamic progression Model. PLoS One. 2015;10(10):e0139440. https://doi.org/10.1371/journal.pone.0139440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hsing AW, Wang RT, Gu FL, Lee M, Wang T, Leng TJ, et al. Vasectomy and prostate cancer risk in China. Cancer Epidemiol, Biomark Prevent. 1994;3(4):285–8.

    CAS  Google Scholar 

  3. Ren SC, Chen R, Sun YH. Prostate cancer research in China. Asian J Androl. 2013;15(3):350–3. https://doi.org/10.1038/aja.2013.37.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kim J, Park JS, Ham WS. The role of metastasis-directed therapy and local therapy of the primary tumor in the management of oligometastatic prostate cancer. Investig Clin Urol. 2017;58(5):307–16. https://doi.org/10.4111/icu.2017.58.5.307.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Wallis CJD, Saskin R, Choo R, Herschorn S, Kodama RT, Satkunasivam R, et al. Surgery versus radiotherapy for clinically-localized prostate cancer: a systematic review and meta-analysis. Eur Urol. 2016;70(1):21–30. https://doi.org/10.1016/j.eururo.2015.11.010.

    Article  PubMed  Google Scholar 

  6. Liu J, Li M, Wang Y, Luo J. Curcumin sensitizes prostate cancer cells to radiation partly via epigenetic activation of miR-143 and miR-143 mediated autophagy inhibition. J Drug Target. 2017;25(7):645–52. https://doi.org/10.1080/1061186x.2017.1315686.

    Article  CAS  PubMed  Google Scholar 

  7. Wei C, Pan Y, Huang H, Li YP. Estramustine phosphate induces prostate cancer cell line PC3 apoptosis by down-regulating miR-31 levels. Eur Rev Med Pharmacol Sci. 2018;22(1):40–5. https://doi.org/10.26355/eurrev_201801_14098.

    Article  CAS  PubMed  Google Scholar 

  8. Quinn JJ, Chang HY. Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. https://doi.org/10.1038/nrg.2015.10.

    Article  CAS  PubMed  Google Scholar 

  9. Chang J, Xu W, Du X, Hou J. MALAT1 silencing suppresses prostate cancer progression by upregulating miR-1 and downregulating KRAS. OncoTargets Ther. 2018;11:3461–73. https://doi.org/10.2147/ott.S164131.

    Article  Google Scholar 

  10. Zhao B, Lu YL, Yang Y, Hu LB, Bai Y, Li RQ, et al. Overexpression of lncRNA ANRIL promoted the proliferation and migration of prostate cancer cells via regulating let-7a/TGF-beta1/ Smad signaling pathway. Cancer Biomark. 2018;21(3):613–20. https://doi.org/10.3233/cbm-170683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Li L, Ma TT, Ma YH, Jiang YF. LncRNA HCG18 contributes to nasopharyngeal carcinoma development by modulating miR-140/CCND1 and Hedgehog signaling pathway. Eur Rev Med Pharmacol Sci. 2019;23(23):10387–99. https://doi.org/10.26355/eurrev_201912_19678.

    Article  CAS  PubMed  Google Scholar 

  12. Ma P, Li L, Liu F, Zhao Q. HNF1A-induced lncRNA HCG18 facilitates gastric cancer progression by upregulating DNAJB12 via miR-152-3p. OncoTargets Ther. 2020;13:7641–52. https://doi.org/10.2147/ott.S253391.

    Article  CAS  Google Scholar 

  13. Ma F, An K, Li Y. Silencing of long non-coding RNA-HCG18 inhibits the tumorigenesis of gastric cancer through blocking PI3K/Akt pathway. OncoTargets Ther. 2020;13:2225–34. https://doi.org/10.2147/ott.S240965.

    Article  CAS  Google Scholar 

  14. Xi Y, Jiang T, Wang W, Yu J, Wang Y, Wu X, et al. Long non-coding HCG18 promotes intervertebral disc degeneration by sponging miR-146a-5p and regulating TRAF6 expression. Sci Rep. 2017;7(1):13234. https://doi.org/10.1038/s41598-017-13364-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Cai C, Huo Q, Wang X, Chen B, Yang Q. SNHG16 contributes to breast cancer cell migration by competitively binding miR-98 with E2F5. Biochem Biophys Res Commun. 2017;485(2):272–8. https://doi.org/10.1016/j.bbrc.2017.02.094.

    Article  CAS  PubMed  Google Scholar 

  16. Zhang G, Li S, Lu J, Ge Y, Wang Q, Ma G, et al. LncRNA MT1JP functions as a ceRNA in regulating FBXW7 through competitively binding to miR-92a-3p in gastric cancer. Mol Cancer. 2018;17(1):87. https://doi.org/10.1186/s12943-018-0829-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Qi X, Zhang DH, Wu N, Xiao JH, Wang X, Ma W. ceRNA in cancer: possible functions and clinical implications. J Med Genet. 2015;52(10):710–8. https://doi.org/10.1136/jmedgenet-2015-103334.

    Article  CAS  PubMed  Google Scholar 

  18. Song J, Wu X, Ma R, Miao L, Xiong L, Zhao W. Long noncoding RNA SNHG12 promotes cell proliferation and activates Wnt/beta-catenin signaling in prostate cancer through sponging microRNA-195. J Cell Biochem. 2019;120(8):13066–75. https://doi.org/10.1002/jcb.28578.

    Article  CAS  PubMed  Google Scholar 

  19. Long B, Li N, Xu XX, Li XX, Xu XJ, Liu JY, et al. Long noncoding RNA LOXL1-AS1 regulates prostate cancer cell proliferation and cell cycle progression through miR-541-3p and CCND1. Biochem Biophys Res Commun. 2018;505(2):561–8. https://doi.org/10.1016/j.bbrc.2018.09.160.

    Article  CAS  PubMed  Google Scholar 

  20. Liu Y, Lin W, Dong Y, Li X, Lin Z, Jia J, et al. Long noncoding RNA HCG18 up-regulates the expression of WIPF1 and YAP/TAZ by inhibiting miR-141-3p in gastric cancer. Cancer Med. 2020;9(18):6752–65. https://doi.org/10.1002/cam4.3288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Li S, Wu T, Zhang D, Sun X, Zhang X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/beta-catenin. Clin Exp Pharmacol Physiol. 2019;47:703–12. https://doi.org/10.1111/1440-1681.13230.

    Article  CAS  Google Scholar 

  22. Sun K, Hu P, Xu F. LINC00152/miR-139-5p regulates gastric cancer cell aerobic glycolysis by targeting PRKAA1. Biomed Pharmacother. 2018;97:1296–302. https://doi.org/10.1016/j.biopha.2017.11.015.

    Article  CAS  PubMed  Google Scholar 

  23. Liu Y, Li Y, Xu Q, Yao W, Wu Q, Yuan J, et al. Long non-coding RNA-ATB promotes EMT during silica-induced pulmonary fibrosis by competitively binding miR-200c. Biochim Biophys Acta Mol basis Dis. 2018;1864(2):420–31. https://doi.org/10.1016/j.bbadis.2017.11.003.

    Article  CAS  PubMed  Google Scholar 

  24. Jia B, Wang Z, Sun X, Chen J, Zhao J, Qiu X. Long noncoding RNA LINC00707 sponges miR-370-3p to promote osteogenesis of human bone marrow-derived mesenchymal stem cells through upregulating WNT2B. Stem Cell Res Ther. 2019;10(1):67. https://doi.org/10.1186/s13287-019-1161-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Peng Z, Wu T, Li Y, Xu Z, Zhang S, Liu B, et al. MicroRNA-370-3p inhibits human glioma cell proliferation and induces cell cycle arrest by directly targeting beta-catenin. Brain Res. 1644;2016:53–61. https://doi.org/10.1016/j.brainres.2016.04.066.

    Article  CAS  Google Scholar 

  26. Cannizzaro E, Bannister AJ, Han N, Alendar A, Kouzarides T. DDX3X RNA helicase affects breast cancer cell cycle progression by regulating expression of KLF4. FEBS Lett. 2018;592(13):2308–22. https://doi.org/10.1002/1873-3468.13106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Bol GM, Vesuna F, Xie M, Zeng J, Aziz K, Gandhi N, et al. Targeting DDX3 with a small molecule inhibitor for lung cancer therapy. EMBO Molec Med. 2015;7(5):648–69. https://doi.org/10.15252/emmm.201404368.

    Article  CAS  Google Scholar 

  28. Vellky JE, Ricke EA, Huang W, Ricke WA. Expression and localization of DDX3 in prostate cancer progression and metastasis. Am J Pathol. 2019;189(6):1256–67. https://doi.org/10.1016/j.ajpath.2019.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We sincerely appreciate all lab members.

Availability of data and material

Not applicable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobo Pan.

Ethics declarations

Ethics Approval

Not applicable. There are no human and animal experiments involved in this research.

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Figure S1.

(A-B) Colony formation and EdU experiments assessed cell proliferative capability in different transfection groups. (C-D) Transwell assay was applied for detecting cell migration and invasion in different transfection groups. (E) Cell apoptosis was estimated through TUNEL assays in different transfection groups. (PNG 2663 kb)

High resolution image (TIF 18389 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, X., Chen, G. & Hu, W. lncRNA HLA Complex Group 18 (HCG18) Facilitated Cell Proliferation, Invasion, and Migration of Prostate Cancer Through Modulating miR-370-3p/DDX3X Axis. Reprod. Sci. 28, 3406–3416 (2021). https://doi.org/10.1007/s43032-021-00614-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00614-2

Keywords

Navigation