Skip to main content
Log in

Effects of PGT-A on Pregnancy Outcomes for Young Women Having One Previous Miscarriage with Genetically Abnormal Products of Conception

  • Reproductive Genetics: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

In this retrospective study, the effect of preimplantation genetic testing for aneuploidy (PGT-A) was evaluated in women younger than 38 years with a history of one prior miscarriage and embryonic chromosomal abnormalities were detected in previous products of conception (POCs). Abnormal karyotypes were detected in POCs at our center between January 2014 and December 2017. Of the women included in this analysis, 124 continued with conventional in vitro fertilization/intracytoplasmic sperm injection cycles (non-PGT-A group) and 93 chose PGT-A cycles (PGT-A group), and the pregnancy outcomes in both groups were compared. Although the clinical pregnancy rate per embryo transfer was significantly higher in the PGT-A group (67.23% vs. 51.85%, p-adj = 0.01), no between-group differences were found in the live birth rate or miscarriage rate (45.38% vs. 40.74%, p-adj = 0.59; 16.25% vs. 14.29%, p-adj = 0.15). Women in both groups had comparative cumulative live birth rates (PGT-A vs. non-PGT-A, 58.06% vs. 53.23%, p = 0.48). The main results of this study suggest that PGT-A is not associated with an increased likelihood of a live birth or a decreased rate of miscarriage among women younger than 38 years without recurrent pregnancy loss and with a history of POCs with embryonic chromosomal abnormalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Somigliana E, Busnelli A, Paffoni A, Vigano P, Riccaboni A, Rubio C, et al. Cost-effectiveness of preimplantation genetic testing for aneuploidies. Fertil Steril. 2019;111(6):1169–76. https://doi.org/10.1016/j.fertnstert.2019.01.025.

    Article  PubMed  Google Scholar 

  2. Sciorio R, Tramontano L, Catt J. Preimplantation genetic diagnosis (PGD) and genetic testing for aneuploidy (PGT-A): status and future challenges. Gynecol Endocrinol. 2019;36:1–6. https://doi.org/10.1080/09513590.2019.1641194.

    Article  CAS  Google Scholar 

  3. Vanneste E, Voet T, Le Caignec C, Ampe M, Konings P, Melotte C, et al. Chromosome instability is common in human cleavage-stage embryos. Nat Med. 2009;15(5):577–83. https://doi.org/10.1038/nm.1924.

    Article  CAS  PubMed  Google Scholar 

  4. Baart EB, Martini E, van den Berg I, Macklon NS, Galjaard RJ, Fauser BC, et al. Preimplantation genetic screening reveals a high incidence of aneuploidy and mosaicism in embryos from young women undergoing IVF. Hum Reprod. 2006;21(1):223–33. https://doi.org/10.1093/humrep/dei291.

    Article  CAS  PubMed  Google Scholar 

  5. Rubio C, Simon C, Vidal F, Rodrigo L, Pehlivan T, Remohi J, et al. Chromosomal abnormalities and embryo development in recurrent miscarriage couples. Hum Reprod. 2003;18(1):182–8. https://doi.org/10.1093/humrep/deg015.

    Article  CAS  PubMed  Google Scholar 

  6. van den Berg MM, van Maarle MC, van Wely M, Goddijn M. Genetics of early miscarriage. Biochim Biophys Acta. 2012;1822(12):1951–9. https://doi.org/10.1016/j.bbadis.2012.07.001.

    Article  CAS  PubMed  Google Scholar 

  7. Martinez MC, Mendez C, Ferro J, Nicolas M, Serra V, Landeras J. Cytogenetic analysis of early nonviable pregnancies after assisted reproduction treatment. Fertil Steril. 2010;93(1):289–92. https://doi.org/10.1016/j.fertnstert.2009.07.989.

    Article  PubMed  Google Scholar 

  8. Ljunger E, Cnattingius S, Lundin C, Anneren G. Chromosomal anomalies in first-trimester miscarriages. Acta Obstet Gynecol Scand. 2005;84(11):1103–7. https://doi.org/10.1111/j.0001-6349.2005.00882.x.

    Article  PubMed  Google Scholar 

  9. Strom CM, Ginsberg N, Applebaum M, Bozorgi N, White M, Caffarelli M, et al. Analyses of 95 first-trimester spontaneous abortions by chorionic villus sampling and karyotype. J Assist Reprod Genet. 1992;9(5):458–61. https://doi.org/10.1007/BF01204052.

    Article  CAS  PubMed  Google Scholar 

  10. Rubio C, Bellver J, Rodrigo L, Castillon G, Guillen A, Vidal C, et al. In vitro fertilization with preimplantation genetic diagnosis for aneuploidies in advanced maternal age: a randomized, controlled study. Fertil Steril. 2017;107(5):1122–9. https://doi.org/10.1016/j.fertnstert.2017.03.011.

    Article  PubMed  Google Scholar 

  11. Scott RT Jr, Upham KM, Forman EJ, Zhao T, Treff NR. Cleavage-stage biopsy significantly impairs human embryonic implantation potential while blastocyst biopsy does not: a randomized and paired clinical trial. Fertil Steril. 2013;100(3):624–30. https://doi.org/10.1016/j.fertnstert.2013.04.039.

    Article  PubMed  Google Scholar 

  12. Sato T, Sugiura-Ogasawara M, Ozawa F, Yamamoto T, Kato T, Kurahashi H, et al. Preimplantation genetic testing for aneuploidy: a comparison of live birth rates in patients with recurrent pregnancy loss due to embryonic aneuploidy or recurrent implantation failure. Hum Reprod. 2019;34:2340–8. https://doi.org/10.1093/humrep/dez229.

    Article  PubMed  Google Scholar 

  13. Ubaldi FM, Cimadomo D, Capalbo A, Vaiarelli A, Buffo L, Trabucco E, et al. Preimplantation genetic diagnosis for aneuploidy testing in women older than 44 years: a multicenter experience. Fertil Steril. 2017;107(5):1173–80. https://doi.org/10.1016/j.fertnstert.2017.03.007.

    Article  PubMed  Google Scholar 

  14. Mastenbroek S, Twisk M, van der Veen F, Repping S. Preimplantation genetic screening: a systematic review and meta-analysis of RCTs. Hum Reprod Update. 2011;17(4):454–66. https://doi.org/10.1093/humupd/dmr003.

    Article  CAS  PubMed  Google Scholar 

  15. Murphy LA, Seidler EA, Vaughan DA, Resetkova N, Penzias AS, Toth TL, et al. To test or not to test? A framework for counselling patients on preimplantation genetic testing for aneuploidy (PGT-A). Hum Reprod. 2019;34(2):268–75. https://doi.org/10.1093/humrep/dey346.

    Article  PubMed  Google Scholar 

  16. Mastenbroek S, Repping S. Preimplantation genetic screening: back to the future. Hum Reprod. 2014;29(9):1846–50. https://doi.org/10.1093/humrep/deu163.

    Article  PubMed  Google Scholar 

  17. Gleicher N, Orvieto R. Is the hypothesis of preimplantation genetic screening (PGS) still supportable? A review. J Ovarian Res. 2017;10(1):21. https://doi.org/10.1186/s13048-017-0318-3.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive Technology. Electronic address Aao, Practice Committees of the American Society for Reproductive M, the Society for Assisted Reproductive T. The use of preimplantation genetic testing for aneuploidy (PGT-A): a committee opinion. Fertil Steril. 2018;109(3):429–36. https://doi.org/10.1016/j.fertnstert.2018.01.002.

    Article  Google Scholar 

  19. Alteri A, Corti L, Sanchez AM, Rabellotti E, Papaleo E, Vigano P. Assessment of pre-implantation genetic testing for embryo aneuploidies: a SWOT analysis. Clin Genet. 2019;95(4):479–87. https://doi.org/10.1111/cge.13510.

    Article  CAS  PubMed  Google Scholar 

  20. Kang HJ, Melnick AP, Stewart JD, Xu K, Rosenwaks Z. Preimplantation genetic screening: who benefits? Fertil Steril. 2016;106(3):597–602. https://doi.org/10.1016/j.fertnstert.2016.04.027.

    Article  PubMed  Google Scholar 

  21. Chen M, Wei S, Hu J, Quan S. Can comprehensive chromosome screening technology improve IVF/ICSI outcomes? A meta-analysis. PLoS One. 2015;10(10):e0140779. https://doi.org/10.1371/journal.pone.0140779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Natesan SA, Bladon AJ, Coskun S, Qubbaj W, Prates R, Munne S, et al. Genome-wide karyomapping accurately identifies the inheritance of single-gene defects in human preimplantation embryos in vitro. Genet Med. 2014;16(11):838–45. https://doi.org/10.1038/gim.2014.45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Vitez SF, Forman EJ, Williams Z. Preimplantation genetic diagnosis in early pregnancy loss. Semin Perinatol. 2019;43(2):116–20. https://doi.org/10.1053/j.semperi.2018.12.009.

    Article  PubMed  Google Scholar 

  24. Sacchi L, Albani E, Cesana A, Smeraldi A, Parini V, Fabiani M, et al. Preimplantation genetic testing for aneuploidy improves clinical, gestational, and neonatal outcomes in advanced maternal age patients without compromising cumulative live-birth rate. J Assist Reprod Genet. 2019;36(12):2493–504. https://doi.org/10.1007/s10815-019-01609-4.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Simon AL, Kiehl M, Fischer E, Proctor JG, Bush MR, Givens C, et al. Pregnancy outcomes from more than 1,800 in vitro fertilization cycles with the use of 24-chromosome single-nucleotide polymorphism-based preimplantation genetic testing for aneuploidy. Fertil Steril. 2018;110(1):113–21. https://doi.org/10.1016/j.fertnstert.2018.03.026.

    Article  PubMed  Google Scholar 

  26. Maheshwari A, McLernon D, Bhattacharya S. Cumulative live birth rate: time for a consensus? Hum Reprod. 2015;30(12):2703–7. https://doi.org/10.1093/humrep/dev263.

    Article  PubMed  Google Scholar 

  27. Lintsen AM, Braat DD, Habbema JD, Kremer JA, Eijkemans MJ. Can differences in IVF success rates between centres be explained by patient characteristics and sample size? Hum Reprod. 2010;25(1):110–7. https://doi.org/10.1093/humrep/dep358.

    Article  CAS  PubMed  Google Scholar 

  28. Malizia BA, Hacker MR, Penzias AS. Cumulative live-birth rates after in vitro fertilization. N Engl J Med. 2009;360(3):236–43. https://doi.org/10.1056/NEJMoa0803072.

    Article  CAS  PubMed  Google Scholar 

  29. Suzumori N, Sugiura-Ogasawara M. Genetic factors as a cause of miscarriage. Curr Med Chem. 2010;17(29):3431–7. https://doi.org/10.2174/092986710793176302.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Yan Li, Tianxiang Ni, and Caiyi Huang for their suggestions regarding this article. Special thanks are given to Jingfu Yang for assisting with clinical data collection.

Funding

This work was supported by the National Key Research and Development Program of China (2016YFC1000202, 2018YFC1002804).

Author information

Authors and Affiliations

Authors

Contributions

T.Z. and Y.Z. conceived of the study under the supervision of J.Y. and Z-J.C. T.Z. designed the study and wrote the initial manuscript. J.Z. collected the villus tissue from miscarriage samples. Y.Z. and H.L. acquired the patients’ data. W.J. conducted the genetic analyses. Q.Z. and J.L. revised the manuscript. T.Z., Y.Z., and J.Z. contributed equally to this manuscript as first authors.

Corresponding author

Correspondence to Junhao Yan.

Ethics declarations

Research Ethics

This study protocol was approved by the Institutional Review Board (Center for Reproductive Medicine, Shandong University) on December 12, 2019.

Patient Consent

All patients provided informed consent to participate in the study before their POC samples were collected.

Conflicts of interest

None

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Tingting Zhou, Yueting Zhu and Juan Zhang should be regarded as joint first authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, T., Zhu, Y., Zhang, J. et al. Effects of PGT-A on Pregnancy Outcomes for Young Women Having One Previous Miscarriage with Genetically Abnormal Products of Conception. Reprod. Sci. 28, 3265–3271 (2021). https://doi.org/10.1007/s43032-021-00542-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00542-1

Keywords

Navigation