Skip to main content

Advertisement

Log in

Impact of Melatonin on Full-Term Fetal Brain Development and Transforming Growth Factor-β Level in a Rat Model of Preeclampsia

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Preeclampsia (PE) is a leading cause of stroke and cognitive impairment in the offspring. Melatonin is involved in the outcome of normal pregnancy. Its receptors are widespread in the embryo. This study aimed to investigate the fetal neuroprotective effect of melatonin in experimentally induced PE. After induction of pregnancy in 18 female rats, they were divided into three equal groups. PE was induced in groups II and III by injection of deoxycorticosterone acetate and drinking isotonic saline. Melatonin was supplied to group III orally (10 mg/kg body weight) throughout pregnancy. Pregnancy was terminated on day 20, and macroanatomical investigation of three fetuses from each pregnant rat and their placentae was performed. Placental and brain homogenates were analyzed for malondialdehyde (MDA), placental growth factor (PLGF), tumor necrosis factor-α (TNF-α), and brain transforming growth factor-β (TGF-β). Histopathological analysis of fetal brain sections was performed. Melatonin improved placental, fetal, and brain weight; significantly reduced fetal death rate; significantly increased PLGF, placental and brain superoxide dismutase, and brain TGF-β; and significantly decreased placental TNF-α and brain MDA. Brain micromorphological study found normal glial cells and neuropil in the melatonin-treated group and a loss of neuronal cell outlines with an accumulation of cellular debris in the untreated group. In conclusion, melatonin approximately showed a neuroprotective activity by managing PE-induced oxidative stress in the placenta and fetal cerebral cortex of rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig 6

Similar content being viewed by others

Data Availability

All authors confirm that the data supporting the findings of the study are available within the article.

Code Availability

Not applicable.

References

  1. Braunthal S, Brateanu A. Hypertension in pregnancy: pathophysiology and treatment. SAGE Open Med. 2019;7:205031211984370. https://doi.org/10.1177/2050312119843700.

    Article  Google Scholar 

  2. Tuovinen S, Räikkönen K, Kajantie E, Pesonen AK, Heinonen K, Osmond C, et al. Depressive symptoms in adulthood and intrauterine exposure to pre-eclampsia: the Helsinki Birth Cohort Study. BJOG. 2010;117(10):1236–42.

    Article  CAS  PubMed  Google Scholar 

  3. Goulopoulou S, Davidge ST. Molecular mechanisms of maternal vascular dysfunction in preeclampsia. Trends Mol Med. 2015;21(2):88–97.

    Article  CAS  PubMed  Google Scholar 

  4. Duhig K, Chappell LC, Shennan AH. Oxidative stress in pregnancy and reproduction. Obstet Med. 2016;9(3):113–6.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kay VR, Rätsep MT, Figueiró-Filho EA, Croy BA. Preeclampsia may influence offspring neuroanatomy and cognitive function: a role for placental growth factor. Biol Reprod. 2019;101(2):271–83.

    Article  PubMed  Google Scholar 

  6. Peres GM, Mariana M, Cairrão E. Pre-eclampsia and eclampsia: an update on the pharmacological treatment applied in Portugal. J Cardiovasc Dev Dis. 2018;5(1):3.

    Article  PubMed Central  CAS  Google Scholar 

  7. Carlomagno G, Minini M, Tilotta M, Unfer V. From implantation to birth: insight into molecular melatonin functions. Int J Mol Sci. 2018;19(9):2802.

    Article  PubMed Central  CAS  Google Scholar 

  8. Rodrigues Helmo F, Etchebehere RM, Bernardes N, Meirelles MF, Galvão Petrini C, Penna Rocha L, et al. Melatonin treatment in fetal and neonatal diseases. Pathol Res Pract. 2018;214(12):1940–51.

    Article  CAS  PubMed  Google Scholar 

  9. Kilic E, Ozdemir YG, Bolay H, Kelestimur H, Dalkara T. Pinealectomy aggravates and melatonin administration attenuates brain damage in focal ischemia. J Cereb Blood Flow Metab. 1999;19(5):511–6.

    Article  CAS  PubMed  Google Scholar 

  10. Wu HJ, Wu C, Niu HJ, Wang K, Mo LJ, Shao AW, et al. Neuroprotective mechanisms of melatonin in hemorrhagic stroke. Cell Mol Neurobiol. 2017;37(7):1173–85.

    Article  CAS  PubMed  Google Scholar 

  11. Yawno T, Castillo-Melendez M, Jenkin G, Wallace EM, Walker DW. Miller SL Mechanisms of melatonin-induced protection in the brain of late gestation fetal sheep in response to hypoxia. Dev Neurosci. 2012;34(6):543–51.

    Article  CAS  PubMed  Google Scholar 

  12. Lahiri DK. Melatonin affects the metabolism of the beta-amyloid precursor protein in different cell types. J Pineal Res. 1999;26(3):137–46.

    Article  CAS  PubMed  Google Scholar 

  13. Stefanova NA, Maksimova KY, Kiseleva E, Rudnitskaya EA, Muraleva NA, Kolosova NG. Melatonin attenuates impairments of structural hippocampal neuroplasticity in OXYS rats during active progression of Alzheimer's disease-like pathology. J Pineal Res. 2015;59(2):163–77.

    Article  CAS  PubMed  Google Scholar 

  14. Rodríguez-Martínez G, Velasco I. Activin and TGF-β effects on brain development and neural stem cells. CNS Neurol Disord Drug Targets. 2012;11(7):844–55.

    Article  PubMed  Google Scholar 

  15. Ochiogu IS, Uchendu CN, Ihedioha JI. A new and simple method of confirmatory detection of mating in albino rats (Rattus norvegicus). Anim Res Int. 2006;3(3):527–30.

    Google Scholar 

  16. Nassar SZ, Badae NM. Protective effect of vitamin D supplementation in a rat modal of preeclampsia: a possible implication of chemerin. Hypertens Pregnancy. 2019;38(3):149–56.

    Article  PubMed  Google Scholar 

  17. Mahmoud GS, El-Deek HEM. Melatonin modulates inflammatory mediators and improves olanzapine-induced hepatic steatosis in rat model of schizophrenia. Int J Physiol Pathophysiol Pharmacol. 2019;11(3):64–75.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Abdelmalek JA, Gansevoort RT, Heerspink HJL. Estimated albumin excretion rate versus urine albumin-creatinine ratio for the assessment of albuminuria: a diagnostic test study from the prevention of renal and vascular end stage disease (PREVEND) study. Am J Kidney Dis. 2014;63(3):415–21.

    Article  CAS  PubMed  Google Scholar 

  19. Allain CC, Poon LS, Chan CS, Richmond W, Fu PC. Enzymatic determination of total serum cholesterol. Clin Chem. 1974;20(4):470–5.

    Article  CAS  PubMed  Google Scholar 

  20. Baijnath S, Murugesan S, Mackraj I, Gathiram P, Moodley J. The effects of sildenafil citrate on urinary podocin and nephrin mRNA expression in an L-NAME model of pre-eclampsia. Mol Cell Biochem. 2017;427:59–67.

    Article  CAS  PubMed  Google Scholar 

  21. Engelberts I, Möller A, Schoen GJ, Van der Linden CJ, Buurman WA. Evaluation of measurement of human TNF in plasma by ELISA. Lymphokine Cytokine Res. 1991;10(1-2):69–76.

    CAS  PubMed  Google Scholar 

  22. Gargouri B, Lassoued S, Ayadi W, Karray H, Masmoudi H, Mokni N, et al. Lipid peroxidation and antioxidant system in the tumor and in the blood of patients with nasopharyngeal carcinoma. Biol Trace Elem Res. 2009;132(1-3):27–34.

    Article  CAS  PubMed  Google Scholar 

  23. Marklund SL, Marklund G. Involvement of superoxide anion radical in the autooxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem. 1974;47:474–96.

    Article  Google Scholar 

  24. Kropf J, Schurek JO, Wollner A, Gressner AM. Immunological measurement of transforming growth factor-beta 1 (TGF-β1) in blood; assay development and comparison. Clin Chem. 1997;43(10):1965–74.

    Article  CAS  PubMed  Google Scholar 

  25. Webster JD, Miller MA, Du Sold D, Ramos-Vara J. Effects of prolonged formalin fixation on diagnostic immunohistochemistry in domestic animals. J Histochem Cytochem. 2009;57(8):753–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Shooner C, Caron P-L, Fréchette-Frigon G, Leblanc V, Déry M-C, Asseli E. TGF-beta expression during rat pregnancy and activity on decidual cell survival. Reprod Biol Endocrinol. 2005;3:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Hashish HA, Kamal RN. Effect of curcumin on the expression of Caspase-3 and Bcl-2 in the spleen of diabetic rats. J Exp Clin Anat. 2015;14:18–23.

    Article  Google Scholar 

  28. Vinnars MT, Nasiell J, Ghazi SAM, Westgren M, Papadogiannakis N. The severity of clinical manifestations in preeclampsia correlates with the amount of placental infarction. Acta Obstet Gynecol Scand. 2011;90:19–25.

    Article  PubMed  Google Scholar 

  29. Paulis L, Pechanova O, Zicha J, Barta A, Gardlik R, Celec P, et al. Melatonin interactions with blood pressure and vascular function during L-NAME-induced hypertension. J Pineal Res. 2010;48:102e108.

    Article  CAS  Google Scholar 

  30. Simko F, Reiter RJ, Pechanova O, Paulis L. Experimental models of melatonin-deficient hypertension. Front Biosci. 2013;18:616e625.

    Article  Google Scholar 

  31. Zhao T, Zhang H, Jin C, Qiu F, Wu Y, Shi L. Melatonin mediates vasodilation through both direct and indirect activation of BKCa channels. J Mol Endocrinol. 2017;59:219e233.

    Google Scholar 

  32. Khalil A, Muttukrishna S, Harrington K, Jauniaux E, Lumbiganon P. Effect of antihypertensive therapy with alpha methyldopa on levels of angiogenic factors in pregnancies with hypertensive disorders. PLoS One. 2008;3(7):e2766.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Weel IC, Baergen RN, Romão-Veiga M, Borges VT, Ribeiro VR, Witkin SS, et al. Association between placental lesions, cytokines and angiogenic factors in pregnant women with preeclampsia. PLoS One. 2016;11(6):e0157584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. Harmon AC, Cornelius DC, Amaral LM, Faulkner JL, Cunningham MW Jr, Wallace K, et al. The role of inflammation in the pathology of preeclampsia. Clin Sci (Lond). 2016;130(6):409–19.

    Article  CAS  Google Scholar 

  35. Cao Z, Fang Y, Lu Y, Tan D, Du C, Li Y, et al. Melatonin alleviates cadmium-induced liver injury by inhibiting the TXNIP-NLRP3 inflammasome. J Pineal Res. 2017;62:e12389.

    Article  CAS  Google Scholar 

  36. Zhang R, Wang X, Ni L, Di X, Ma B, Niu S, et al. COVID-19: melatonin as a potential adjuvant treatment. Life Sci. 2020;250:117583.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tarocco A, Caroccia N, Morciano G, Wieckowski MR, Ancora G, Garani G, et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019;10:317.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Tamura EK, Cecon E, Monteiro AW, Silva CL, Markus RP. Melatonin inhibits LPS-induced NO production in rat endothelial cells. J Pineal Res. 2009;46:268–74.

    Article  CAS  PubMed  Google Scholar 

  39. Rahim I, Djerdjouri B, Sayed RK, Fernández-Ortiz M, Fernández-Gil B, Hidalgo-Gutiérrez A, et al. Melatonin administration to wild-type mice and nontreated NLRP3 mutant mice share similar inhibition of the inflammatory response during sepsis. J Pineal Res. 2017;63(1):e12410.

    Article  CAS  Google Scholar 

  40. Tenório MB, Ferreira RC, Moura FA, Bueno NB, Goulart MOF, Oliveira ACM. Oral antioxidant therapy for prevention and treatment of preeclampsia: meta-analysis of randomized controlled trials. Nutr Metab Cardiovasc Dis. 2018;28(9):865–76.

    Article  PubMed  CAS  Google Scholar 

  41. Hannan NJ, Binder NK, Beard S, Nguyen T-V, Kaitu’u-Lino TJ, Tong S. Melatonin enhances antioxidant molecules in the placenta, reduces secretion of soluble fms-like tyrosine kinase 1 (sFLT) from primary trophoblast but does not rescue endothelial dysfunction: an evaluation of its potential to treat preeclampsia. PLoS One. 2018;3(4):e0187082. https://doi.org/10.1371/journal.pone.0187082.

    Article  CAS  Google Scholar 

  42. Richter HG, Hansell JA, Raut S, Giussani DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in under nourished pregnancy. J Pineal Res. 2009;46(4):357–64.

    Article  PubMed  CAS  Google Scholar 

  43. Tamura H, Jozaki M, Tanabe M, Shirafuta Y, Mihara Y, Shinagawa M, et al. Importance of melatonin in assisted reproductive technology and ovarian aging. Int J Mol Sci. 2020;21:1135.

    Article  CAS  PubMed Central  Google Scholar 

  44. Welin AK, Svedin P, Lapatto R, Sultan B, Hagberg H, Gressens P, et al. Melatonin reduces inflammation and cell death in white matter in the mid-gestation fetal sheep following umbilical cord occlusion. Pediatr Res. 2007;61:153–8.

    Article  CAS  PubMed  Google Scholar 

  45. Thakor AS, Herrera EA, Serón Ferré M, Giussani DA. Melatonin and vitamin C increase umbilical blood flow via nitric oxide dependent mechanisms. J Pineal Res. 2010;49:399–406.

    Article  CAS  PubMed  Google Scholar 

  46. Beñaldo FA, Llanos AJ, Araya-Quijada C, Rojas A, Gonzalez-Candia A, Herrera EA, et al. Effects of melatonin on the defense to acute hypoxia in newborn lambs. Front Endocrinol (Lausanne). 2019;10:433.

    Article  Google Scholar 

  47. Lecuyer M, Laquerrière A, Bekri S, Lesueur C, Ramdani Y, Jégou S, et al. PLGF, a placental marker of fetal brain defects after in utero alcohol exposure. Acta Neuropathol Commun. 2017;5:44.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. He Y, Zhang H, Yung A, Villeda SA, Jaeger PA, Olayiwola O, et al. ALK5-dependent TGF-signaling is a major determinant of late-stage adult neurogenesis. Nat Neurosci. 2014;17:943–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Le Goff C, Mahaut C, Abhyankar A, Le Goff W, Serre V, Afenjar A, et al. Mutations at a single codon in mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat Genet. 2011;44:85–8.

    Article  PubMed  CAS  Google Scholar 

  50. Peng L, Yang C, Yin J, Ge M, Wang S, Zhang G, et al. TGF-β2 induces Gli1 in a Smad3-dependent manner against cerebral ischemia/reperfusion injury after isoflurane post-conditioning in rats. Front Neurosci. 2019;13:636.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Hamaguchi M, Muramatsu R, Fujimura H, Mochizuki H, Kataoka H, Yamashita T. Circulating transforming growth factor-b1 facilitates remyelination in the adult central nervous system. ELife. 2019;8:e41869.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ni B, Shen H, Wang W, Lu H, Jiang L. TGF-β1 reduces the oxidative stress-induced autophagy and apoptosis in rat annulus fibrosus cells through the ERK signaling pathway. J Orthop Surg Res. 2019;14:241.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Liu H, Zhu Y, Zhu H, Cai R, Wang KF, Song J, et al. Role of transforming growth factor β1 in the inhibition of gastric cancer cell proliferation by melatonin in vitro and in vivo. Oncol Rep. 2019;42(2):753–62.

    CAS  PubMed  Google Scholar 

  54. Chen X, Wang Z, Ma H, Zhang S, Yang H, Wang H, et al. Melatonin attenuates hypoxia-induced epithelial-mesenchymal transition and cell aggressive via Smad7/ CCL20 in glioma. Oncotarget. 2017;8(55):93580–92.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nakashima H, Tsujimura K, Irie K, Ishizu M, Pan M, Kameda T, et al. Canonical TGF-signaling negatively regulates neuronal morphogenesis through TGIF/Smad complex-mediated CRMP2 suppression. J Neurosci. 2018;38(20):4791–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Fortunato JJ, da Rosa N, Martins Laurentino AO, Goulart M, Michalak C, Borges LP, et al. Effects of omega-3 fatty acids on stereotypical behavior and social interactions in Wistar rats prenatally exposed to lipopolysaccarides. Nutrition. 2017;35:119–27.

    Article  CAS  PubMed  Google Scholar 

  57. Lin S, Leonard D, Co MA, Mukhopadhyay D, Giri B, Perger L, et al. Pre-eclampsia has an adverse impact on maternal and fetal health. Transl Res. 2015;165(4):449–63.

    Article  PubMed  Google Scholar 

  58. Doğanlar BZ, Güçlü H, Oztopuz O, Türkön H, Dogan A, Uzun M, et al. The role of melatonin in oxidative stress, DNA damage, apoptosis and angiogenesis in fetal eye under preeclampsia and melatonin deficiency stress. Curr Eye Res. 2019;44:10.

    Article  Google Scholar 

  59. Ozacmak VH, Barut F, Ozacmak HS. Melatonin provides neuroprotection by reducing oxidative stress and HSP70 expression during chronic cerebral hypoperfusion in ovariectomized rats. J Pineal Res. 2009;47(2):156–63.

    Article  CAS  PubMed  Google Scholar 

  60. Cabrera J, Quintana J, Reiter RJ, Loro J, Cabrera F, Estévez F. Melatonin prevents apoptosis and enhances HSP27 mRNA expression induced by heat shock in HL-60 cells: possible involvement of the MT2 receptor. J Pineal Res. 2003;35:231–8.

    Article  CAS  PubMed  Google Scholar 

  61. Baydas G, Koz TS, Tuzcu M, Nedzvetsky SV. Melatonin inhibits oxidative stress and apoptosis in fetal brains of hyperhomocysteinemic rat dams. J Pineal Res. 2007;43(3):225–31.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The Ministry of High Education and Scientific Research and Zagazig University, Egypt, supported this work by supplying the required kits, chemicals, and tools. All experiments were performed at Zagazig University laboratories.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection, and analysis were performed by Dr. Nanees F. El-Malkey, Dr. Mohammed Aref, Dr. Hassan Emam, and Dr. Sama Salah Khalil. The first draft of the manuscript was written by Dr. Nanees F. El-Malkey, and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Nanees Fouad El-Malkey.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Malkey, N.F., Aref, M., Emam, H. et al. Impact of Melatonin on Full-Term Fetal Brain Development and Transforming Growth Factor-β Level in a Rat Model of Preeclampsia. Reprod. Sci. 28, 2278–2291 (2021). https://doi.org/10.1007/s43032-021-00497-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00497-3

Keywords

Navigation