Skip to main content
Log in

Modulation of Autophagy Through Regulation of 5’-AMP-Activated Protein Kinase Affects Mitophagy and Mitochondrial Function in Primary Human Trophoblasts

  • General Gynecology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

The placenta is important for pregnancy maintenance, and autophagy is documented to be essential for placental development. Autophagy is responsible for degrading and recycling cellular misfolded proteins and damaged organelles. Mitophagy is a selective type of autophagy, where the autophagic machinery engulfs the damaged mitochondria for degradation, and there is reciprocal crosstalk between autophagy and mitochondria. Within these processes, 5’-AMP-activated protein kinase (AMPK) plays an important role. However, the role of AMPK regulation in both autophagy and mitochondria in primary human trophoblasts is unknown. In this study, we address this question by investigating changes in mRNA expression and the abundance of autophagy- and mitochondria-related proteins in isolated human trophoblasts after treatment with AMPK agonists and antagonists. We found that compared to the control group, autophagy was slightly suppressed in the AMPK agonist group and significantly enhanced autophagy in the AMPK antagonist group. However, the expressions of genes related to autophagosome-lysosome fusion were reduced, while genes related to lysosomal function were unchanged in both groups. Furthermore, mitophagy and mitochondrial fusion/fission were both impaired in the AMPK agonist and antagonist groups. Although mitochondrial biogenesis was enhanced in both groups, the function of mitochondrial fatty acid oxidation was increased in the AMPK agonist group but decreased in the AMPK antagonist group. Overall, our study demonstrates that AMPK regulation negatively modulates autophagy and consequently affects mitophagy, mitochondrial fusion/fission, and function in primary human trophoblasts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

All the data used to support the findings of this study are included within the article.

References

  1. Woods L, Perez-Garcia V, Hemberger M. Regulation of placental development and its impact on fetal growth-new insights from mouse models. Front Endocrinol. 2018;9:570. https://doi.org/10.3389/fendo.2018.00570.

    Article  Google Scholar 

  2. Kaur J, Debnath J. Autophagy at the crossroads of catabolism and anabolism. Nat Rev Mol Cell Biol. 2015;16(8):461–72. https://doi.org/10.1038/nrm4024.

    Article  CAS  PubMed  Google Scholar 

  3. Gong JS, Kim GJ. The role of autophagy in the placenta as a regulator of cell death. Clin Exp Reprod Med. 2014;41(3):97–107. https://doi.org/10.5653/cerm.2014.41.3.97.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Avagliano L, Massa V, Terraneo L, Samaja M, Doi P, Bulfamante GP, et al. Gestational diabetes affects fetal autophagy. Placenta. 2017;55:90–3. https://doi.org/10.1016/j.placenta.2017.05.002.

    Article  CAS  PubMed  Google Scholar 

  5. Yang Z, Klionsky DJ. Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol. 2010;22(2):124–31. https://doi.org/10.1016/j.ceb.2009.11.014.

    Article  CAS  PubMed  Google Scholar 

  6. Reggiori F, Klionsky DJ. Autophagy in the eukaryotic cell. Eukaryot Cell. 2002;1(1):11–21. https://doi.org/10.1128/ec.01.1.11-21.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mizushima N, Levine B. Autophagy in mammalian development and differentiation. Nat Cell Biol. 2010;12(9):823–30. https://doi.org/10.1038/ncb0910-823.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Oh SY, Roh CR. Autophagy Placenta. 2017;60(3):241–59. https://doi.org/10.5468/ogs.2017.60.3.241.

    Article  Google Scholar 

  9. Nixon RA. The role of autophagy in neurodegenerative disease. Nat Med. 2013;19(8):983–97. https://doi.org/10.1038/nm.3232.

    Article  CAS  PubMed  Google Scholar 

  10. Li Q, Liu Y, Sun M. Autophagy and Alzheimer’s disease. Cell Mol Neurobiol. 2017;37(3):377–88. https://doi.org/10.1007/s10571-016-0386-8.

    Article  CAS  PubMed  Google Scholar 

  11. Cerri S, Blandini F. Role of autophagy in Parkinson’s disease. Curr Med Chem. 2019;26(20):3702–18. https://doi.org/10.2174/0929867325666180226094351.

    Article  CAS  PubMed  Google Scholar 

  12. Kroemer G, Mariño G, Levine B. Autophagy and the integrated stress response. Mol Cell. 2010;40(2):280–93. https://doi.org/10.1016/j.molcel.2010.09.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kim J, Guan KL. mTOR as a central hub of nutrient signalling and cell growth. 2019;21(1):63-71. https://doi.org/10.1038/s41556-018-0205-1.

  14. Wang H, Liu Y, Wang D, Xu Y, Dong R, Yang Y, et al. The upstream pathway of mTOR-mediated autophagy in liver diseases. Cells. 2019;8(12). https://doi.org/10.3390/cells8121597.

  15. Mizushima N, Yoshimori T, Levine B. Methods in mammalian autophagy research. Cell. 2010;140(3):313–26. https://doi.org/10.1016/j.cell.2010.01.028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Han D, Yang B, Olson LK, Greenstein A, Baek SH, Claycombe KJ, et al. Activation of autophagy through modulation of 5'-AMP-activated protein kinase protects pancreatic beta-cells from high glucose. Biochem J. 2010;425(3):541–51. https://doi.org/10.1042/bj20090429.

    Article  CAS  PubMed  Google Scholar 

  17. Schiavi A, Ventura N. The interplay between mitochondria and autophagy and its role in the aging process. Exp Gerontol. 2014;56:147–53. https://doi.org/10.1016/j.exger.2014.02.015.

    Article  CAS  PubMed  Google Scholar 

  18. Holland O, Dekker Nitert M, Gallo LA, Vejzovic M, Fisher JJ, Perkins AV. Review: placental mitochondrial function and structure in gestational disorders. Placenta. 2017;54:2–9. https://doi.org/10.1016/j.placenta.2016.12.012.

    Article  CAS  PubMed  Google Scholar 

  19. Osellame LD, Duchen MR. Quality control gone wrong: mitochondria, lysosomal storage disorders and neurodegeneration. Br J Pharmacol. 2014;171(8):1958–72. https://doi.org/10.1111/bph.12453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Youle RJ, van der Bliek AM. Mitochondrial fission, fusion, and stress. Science (New York, NY). 2012;337(6098):1062–5. https://doi.org/10.1126/science.1219855.

    Article  CAS  Google Scholar 

  21. Muralimanoharan S, Gao X, Weintraub S, Myatt L, Maloyan A. Sexual dimorphism in activation of placental autophagy in obese women with evidence for fetal programming from a placenta-specific mouse model. Autophagy. 2016;12(5):752–69. https://doi.org/10.1080/15548627.2016.1156822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Mele J, Muralimanoharan S, Maloyan A, Myatt L. Impaired mitochondrial function in human placenta with increased maternal adiposity. Am J Physiol Endocrinol Metab. 2014;307(5):E419–25. https://doi.org/10.1152/ajpendo.00025.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Myatt L, Maloyan A. Obesity and placental function. Semin Reprod Med. 2016;34(1):42–9. https://doi.org/10.1055/s-0035-1570027.

    Article  CAS  PubMed  Google Scholar 

  24. Burton GJ, Yung HW, Murray AJ. Mitochondrial-endoplasmic reticulum interactions in the trophoblast: stress and senescence. Placenta. 2017;52:146–55. https://doi.org/10.1016/j.placenta.2016.04.001.

    Article  CAS  PubMed  Google Scholar 

  25. Chifenti B, Locci MT, Lazzeri G, Guagnozzi M, Dinucci D, Chiellini F, et al. Autophagy-related protein LC3 and Beclin-1 in the first trimester of pregnancy. Clin Exp Reprod Med. 2013;40(1):33–7. https://doi.org/10.5653/cerm.2013.40.1.33.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Shin HJ, Kim H, Oh S, Lee JG, Kee M, Ko HJ, et al. AMPK-SKP2-CARM1 signalling cascade in transcriptional regulation of autophagy. Nature. 2016;534(7608):553–7. https://doi.org/10.1038/nature18014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen M, Liu J, Yang L, Ling W. AMP-activated protein kinase regulates lipid metabolism and the fibrotic phenotype of hepatic stellate cells through inhibition of autophagy. FEBS Open Biol. 2017;7(6):811–20. https://doi.org/10.1002/2211-5463.12221.

    Article  CAS  Google Scholar 

  28. Kliman HJ, Nestler JE, Sermasi E, Sanger JM, Strauss JF 3rd. Purification, characterization, and in vitro differentiation of cytotrophoblasts from human term placentae. Endocrinology. 1986;118(4):1567–82. https://doi.org/10.1210/endo-118-4-1567.

    Article  CAS  PubMed  Google Scholar 

  29. Xiao B, Deng X, Zhou W, Tan EK. Flow cytometry-based assessment of mitophagy using MitoTracker. Front Cell Neurosci. 2016;10:76. https://doi.org/10.3389/fncel.2016.00076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Yang F, Li T, Dong Z, Mi R. MicroRNA-410 is involved in mitophagy after cardiac ischemia/reperfusion injury by targeting high-mobility group box 1 protein. J Cell Biochem. 2018.

  31. Zhang D, Wang W, Sun X, Xu D, Wang C, Zhang Q, et al. AMPK regulates autophagy by phosphorylating BECN1 at threonine 388. Autophagy. 2016;12:1447–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Liu X, Chhipa RR, Nakano I, Dasgupta B. The AMPK inhibitor compound C is a potent AMPK-independent antiglioma agent. Mol Cancer Ther. 2014;13(3):596–605. https://doi.org/10.1158/1535-7163.mct-13-0579.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Samari HR, Seglen PO. Inhibition of hepatocytic autophagy by adenosine, aminoimidazole-4-carboxamide riboside, and N6-mercaptopurine riboside. Evidence for involvement of amp-activated protein kinase. J Biol Chem. 1998;273(37):23758–63. https://doi.org/10.1074/jbc.273.37.23758.

    Article  CAS  PubMed  Google Scholar 

  34. Declèves A-E, Sharma K, Satriano J. Beneficial effects of AMPK agonists in kidney ischemia reperfusion: autophagy and cellular stress markers. Nephron Exp Nephrol. 2014;10.

  35. Huang L, Dai K, Chen M, Zhou W, Wang X, Chen J et al. The AMPK agonist PT1 and mTOR inhibitor 3HOI-BA-01 protect cardiomyocytes after ischemia through induction of autophagy. J Cardiovasc Pharmacol Ther. 2015;41–4.

  36. Ji L, Chen Z, Xu Y, Xiong G, Liu R, Wu C, et al. Systematic characterization of autophagy in gestational diabetes mellitus. Endocrinology. 2017;158(8):2522–32. https://doi.org/10.1210/en.2016-1922.

    Article  CAS  PubMed  Google Scholar 

  37. Avagliano L, Terraneo L, Virgili E, Martinelli C, Doi P, Samaja M, et al. Autophagy in normal and abnormal early human pregnancies. Reprod Sci (Thousand Oaks, Calif). 2015;22(7):838–44. https://doi.org/10.1177/1933719114565036.

    Article  Google Scholar 

Download references

Code Availability

No custom algorithm, software, or code was used in the present work.

Funding

This study was supported by the National Natural Science Foundation of China (No. 81571455).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen-yu Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflicts of interest.

Ethics Approval

This study was approved by the institutional review boards of Baylor College of Medicine and Beijing Chaoyang Hospital.

Consent to Participate

Informed consent was obtained from all participants.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Supplementary Fig. 1

Graph of primary trophoblasts isolated from the human placenta. Purified trophoblasts isolated from human placenta were stained using cell markers CK18 and hPL (PNG 880 kb)

High resolution image (TIF 5804 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Hq., Chandra, Y. & Zhang, Zy. Modulation of Autophagy Through Regulation of 5’-AMP-Activated Protein Kinase Affects Mitophagy and Mitochondrial Function in Primary Human Trophoblasts. Reprod. Sci. 28, 2314–2322 (2021). https://doi.org/10.1007/s43032-021-00495-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00495-5

Keywords

Navigation