Skip to main content

Advertisement

Log in

Expression of SGLT1 in the Mouse Endometrial Epithelium and its Role in Early Embryonic Development and Implantation

  • Reproductive Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Many functional activities of endometrium epithelium are energy consuming which are very important for maintaining intrauterine environment needed by early embryonic development and establishment of implantation window. Glucose is a main energy supplier and one of the main components of intrauterine fluid. Obviously, glucose transports in endometrium epithelium involve in for these activities but their functions have not been elucidated. In this research, we observed a spatiotemporal pattern of sodium glucose transporter 1 (SGLT1) expression in the mouse endometrium. We also determined that progesterone can promote the expression of SGLT1 in the mouse endometrial epithelium in response to the action of oestrogen. Treatment with the SGLT1 inhibitor phlorizin or small interfering RNA specific for SGLT1 (SGLT1-siRNA) altered glucose uptake in primary cultured endometrial epithelial cells, which exhibited reduced ATP levels and AMPK activation. The injection of phlorizin or SGLT1-siRNA into one uterine horn of each mouse on day 2 of pregnancy led to an increased glucose concentration in the uterine fluid and decreased number of harvested normal blastocysts and decreased expression of integrin αVβ3 in endometrial epithelium and increased expression of mucin 1 and lactoferrin in endometrial epithelium and the uterine homogenates exhibited activated AMPK, a decreased ATP level on day 4, and a decreased number of implantation sites on day 5. In embryo transfer experiments, pre-treatment of the uterine horn with phlorizin or SGLT1-siRNA during the implantation window led to a decreased embryo implantation rate on day 5 of pregnancy, even when embryos from normal donor mice were used. In conclusion, SGLT1, which participates in glucose transport in the mouse endometrial epithelium, inhibition and/or reduced expression of SGLT1 affects early embryo development by altering the glucose concentration in the uterine fluid. Inhibition and/or reduced expression of SGLT1 also affects embryo implantation by influencing energy metabolism in epithelial cells, which consequently influences implantation-related functional activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Cha J, Sun X, Dey S. Mechanisms of implantation: strategies for successful pregnancy. Nat Med. 2012;18(12):1754–67. https://doi.org/10.1038/nm.3012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Aplin J, Ruane P. Embryo-epithelium interactions during implantation at a glance. J Cell Sci. 2017;130(1):15–22. https://doi.org/10.1242/jcs.175943.

    Article  CAS  PubMed  Google Scholar 

  3. Surveyor G, Gendler S, Pemberton L, Das S, Chakraborty I, Julian J, et al. Expression and steroid hormonal control of Muc-1 in the mouse uterus. Endocrinology. 1995;136(8):3639–47. https://doi.org/10.1210/endo.136.8.7628404.

    Article  CAS  PubMed  Google Scholar 

  4. Ye X. Uterine Luminal Epithelium as the Transient Gateway for Embryo Implantation. Trends Endocrinol Metab. 2020;31(2):165–80. https://doi.org/10.1016/j.tem.2019.11.008.

    Article  CAS  PubMed  Google Scholar 

  5. Sun X, Bartos A, Whitsett J, Dey S. Uterine deletion of Gp130 or Stat3 shows implantation failure with increased estrogenic responses. Mol Endocrinol. 2013;27(9):1492–501. https://doi.org/10.1210/me.2013-1086.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Teng C. Factors regulating lactoferrin gene expression. Biochem Cell Biol. 2006;84(3):263–7. https://doi.org/10.1139/o06-034.

    Article  CAS  PubMed  Google Scholar 

  7. McMaster M, Teng C, Dey S, Andrews G. Lactoferrin in the mouse uterus: analyses of the preimplantation period and regulation by ovarian steroids. Mol Endocrinol. 1992;6(1):101–11. https://doi.org/10.1210/mend.6.1.1738363.

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Dey S. Roadmap to embryo implantation: clues from mouse models. Nat Rev Genet. 2006;7(3):185–99. https://doi.org/10.1038/nrg1808.

    Article  CAS  PubMed  Google Scholar 

  9. Frolova A, O'Neill K, Moley K. Dehydroepiandrosterone inhibits glucose flux through the pentose phosphate pathway in human and mouse endometrial stromal cells, preventing decidualization and implantation. Mol Endocrinol. 2011;25(8):1444–55. https://doi.org/10.1210/me.2011-0026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zhang XQ, Zhao D, Ma YD, Wang YC, Yue LM, et al. Impact of Disturbed Glucose Homeostasis Regulated by AMPK in Endometrium on Embryo Implantation in Diabetes Mice. Reprod Sci. 2020;27:1752–7. https://doi.org/10.1007/s43032-020-00169-8.

  11. Kahn B, Alquier T, Carling D, Hardie D. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cell Metab. 2005;1(1):15–25. https://doi.org/10.1016/j.cmet.2004.12.003.

    Article  CAS  PubMed  Google Scholar 

  12. Zhang Y, Wang Q, Wang H, Duan E. Uterine Fluid in Pregnancy: A Biological and Clinical Outlook. Trends Mol Med. 2017;23(7):604–14. https://doi.org/10.1016/j.molmed.2017.05.002.

    Article  PubMed  Google Scholar 

  13. Gardner D, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65(2):349–53. https://doi.org/10.1016/s0015-0282(16)58097-2.

    Article  CAS  PubMed  Google Scholar 

  14. Simpson I, Dwyer D, Malide D, Moley K, Travis A, Vannucci S. The facilitative glucose transporter GLUT3: 20 years of distinction. Am J Physiol Endocrinol Metab. 2008;295(2):E242–53. https://doi.org/10.1152/ajpendo.90388.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Koepsell H. The Na+-D-glucose cotransporters SGLT1 and SGLT2 are targets for the treatment of diabetes and cancer. Pharmacol Ther. 2017;170:148–65. https://doi.org/10.1016/j.pharmthera.2016.10.017.

    Article  CAS  PubMed  Google Scholar 

  16. Wright EM, Turk E. The sodium/glucose cotransport family SLC5. Pflugers Arch. 2004;447(5):510–8. https://doi.org/10.1007/s00424-003-1063-6.

    Article  CAS  PubMed  Google Scholar 

  17. Dominguez Rieg J, Chirasani V, Koepsell H, Senapati S, Mahata S, Rieg T. Regulation of intestinal SGLT1 by catestatin in hyperleptinemic type 2 diabetic mice. Lab Investig. 2016;96(1):98–111. https://doi.org/10.1038/labinvest.2015.129.

    Article  CAS  PubMed  Google Scholar 

  18. Scafoglio C, Hirayama BA, Kepe V, Liu J, Ghezzi C, Satyamurthy N, et al. Functional expression of sodium-glucose transporters in cancer. Proc Natl Acad Sci. 2015;112(30):E4111. https://doi.org/10.1073/pnas.1511698112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wright EM, Ghezzi C, Loo DDF. Novel and Unexpected Functions of SGLTs. Physiology. 2017;32(6):435–43. https://doi.org/10.1152/physiol.00021.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Casneuf V, Fonteyne P, Van Damme N, Demetter P, Pauwels P, de Hemptinne B, et al. Expression of SGLT1, Bcl-2 and p53 in primary pancreatic cancer related to survival. Cancer Investig. 2008;26(8):852–9. https://doi.org/10.1080/07357900801956363.

    Article  CAS  Google Scholar 

  21. Guo G, Cai Y, Zhang B, Xu R, Qiu H, Xia L, et al. Overexpression of SGLT1 and EGFR in colorectal cancer showing a correlation with the prognosis. Med Oncol. 2011:S197–203. https://doi.org/10.1007/s12032-010-9696-8.

  22. Salker M, Singh Y, Zeng N, Chen H, Zhang S, Umbach A, et al. Loss of Endometrial Sodium Glucose Cotransporter SGLT1 is Detrimental to Embryo Survival and Fetal Growth in Pregnancy. Sci Rep. 2017;7(1):12612. https://doi.org/10.1038/s41598-017-11674-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Ehrenkranz JRL, Lewis NG, Ronald Kahn C, Roth J. Phlorizin: a review. Diabetes Metab Res Rev. 2005;21(1):31–8. https://doi.org/10.1002/dmrr.532.

    Article  CAS  PubMed  Google Scholar 

  24. Banerjee S, Wang D, Alzamora R, Huang X, Pastor-Soler N, Hallows K, et al. SGLT1, a novel cardiac glucose transporter, mediates increased glucose uptake in PRKAG2 cardiomyopathy. J Mol Cell Cardiol. 2010;49(4):683–92. https://doi.org/10.1016/j.yjmcc.2010.06.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Pan J, Yuan D, Zhao Y, Nie L, Lei Y, Liu M, et al. Progesterone-induced miR-133a inhibits the proliferation of endometrial epithelial cells. Acta Physiol (Oxf). 2017;219(3):683–92. https://doi.org/10.1111/apha.12762.

    Article  CAS  Google Scholar 

  26. Kover K, Liang L, Andrews G, Dey S. Differential expression and regulation of cytokine genes in the mouse uterus. Endocrinology. 1995;136(4):1666–73. https://doi.org/10.1210/endo.136.4.7895677.

    Article  CAS  PubMed  Google Scholar 

  27. Nie L, Zhao Y, Zhao D, Long Y, Lei Y, Liu M, et al. Progesterone-induced miR-152 interferes with embryonic implantation by downregulating GLUT3 in endometrial epithelium. Am J Physiol Endocrinol Metab. 2019;316(4):E557–E67. https://doi.org/10.1152/ajpendo.00245.2018.

    Article  CAS  PubMed  Google Scholar 

  28. Gellersen B, Brosens J. Cyclic decidualization of the human endometrium in reproductive health and failure. Endocr Rev. 2014;35(6):851–905. https://doi.org/10.1210/er.2014-1045.

    Article  CAS  PubMed  Google Scholar 

  29. Sun X, Zhang L, Xie H, Wan H, Magella B, Whitsett JA, et al. Kruppel-like factor 5 (KLF5) is critical for conferring uterine receptivity to implantation. Proc Natl Acad Sci U S A. 2012;109(4):1145–50. https://doi.org/10.1073/pnas.1118411109.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Conaghan J, Handyside AH, Winston RM, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil. 1993;99(1):87–95. https://doi.org/10.1530/jrf.0.0990087.

    Article  CAS  PubMed  Google Scholar 

  31. Torner E, Bussalleu E, Briz MD, Yeste M, Bonet S. Energy substrate influences the effect of the timing of the first embryonic cleavage on the development of in vitro-produced porcine embryos in a sex-related manner. Mol Reprod Dev. 2013;80(11):924–35. https://doi.org/10.1002/mrd.22229.

    Article  CAS  PubMed  Google Scholar 

  32. Mullen MP, Bazer FW, Wu G, Parr MH, Evans ACO, Crowe MA, et al. Effects of systemic progesterone during the early luteal phase on the availabilities of amino acids and glucose in the bovine uterine lumen. Reprod Fertil Dev. 2014;26(2):282–92. https://doi.org/10.1071/rd12319.

    Article  CAS  PubMed  Google Scholar 

  33. Gao H, Wu G, Spencer TE, Johnson GA, Li X, Bazer FW. Select nutrients in the ovine uterine lumen. I. Amino acids, glucose, and ions in uterine lumenal flushings of cyclic and pregnant ewes. Biol Reprod. 2009;80(1):86–93. https://doi.org/10.1095/biolreprod.108.071597.

    Article  CAS  PubMed  Google Scholar 

  34. Harris SE, Gopichandran N, Picton HM, Leese HJ, Orsi NM. Nutrient concentrations in murine follicular fluid and the female reproductive tract. Theriogenology. 2005;64(4):992–1006. https://doi.org/10.1016/j.theriogenology.2005.01.004.

    Article  CAS  PubMed  Google Scholar 

  35. Wales R, Edirisinghe W. Volume of fluid and concentration of cations and energy substrates in the uteri of mice during early pseudopregnancy. Reprod Fertil Dev. 1989;1(2):171–8. https://doi.org/10.1071/rd9890171.

    Article  CAS  PubMed  Google Scholar 

  36. Ruan Y, Chen H, Chan H. Ion channels in the endometrium: regulation of endometrial receptivity and embryo implantation. Hum Reprod Update. 2014;20(4):517–29. https://doi.org/10.1093/humupd/dmu006.

    Article  CAS  PubMed  Google Scholar 

  37. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril. 1996;65(2):349–53. https://doi.org/10.1016/s0015-0282(16)58097-2.

    Article  CAS  PubMed  Google Scholar 

  38. Ivanisević M, Buković D, Starcević V, Djelmis J, Pfeifer D. Influence of hyperglycemia on early embryonal growth in IDDM pregnant women. Coll Antropol. 1999;23(1):183–8.

    PubMed  Google Scholar 

  39. Padmanabhan R, Shafiullah M. Effect of maternal diabetes and ethanol interactions on embryo development in the mouse. Mol Cell Biochem. 2004;261:43–56. https://doi.org/10.1023/b:mcbi.0000028736.00532.1e.

    Article  CAS  PubMed  Google Scholar 

  40. Moley KH, Vaughn WK, DeCherney AH, Diamond MP. Effect of diabetes mellitus on mouse pre-implantation embryo development. J Reprod Fertil. 1991;93(2):325–32. https://doi.org/10.1530/jrf.0.0930325.

    Article  CAS  PubMed  Google Scholar 

  41. Ponce ACP, Monsalve MCR, Garibay MAP, Andrade SI. Effect of maternal diabetes on human and rat fetal development. Ginecol Obstet Mex. 2005;73(10):544–52.

    Google Scholar 

  42. Suman P, Malhotra S, Gupta S. LIF-STAT signaling and trophoblast biology. JAK-STAT. 2013;2(4):e25155. https://doi.org/10.4161/jkst.25155.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Nilsson O. The morphology of blastocyst implantation. J Reprod Fertil. 1974;39(1):187–94. https://doi.org/10.1530/jrf.0.0390187.

    Article  CAS  PubMed  Google Scholar 

  44. Lin S, Hardie D. AMPK: Sensing Glucose as well as Cellular Energy Status. Cell Metab. 2018;27(2):299–313. https://doi.org/10.1016/j.cmet.2017.10.009.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support from the National Natural Science Foundation of China (No.31471105 and No.31900822, URL: http://www.nsfc.gov.cn/). Support from Sichuan Science and Technology Program (No.2020YJ0486, URL: http://202.61.89.120/). Support from the Fundamental Research Funds for the Central Universities from Northwest Minzu University (No.31920180028).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Nie or Li-min Yue.

Ethics declarations

Conflict of interest

The authors have no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 2356 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Lx., Song, Jw., Ma, Yd. et al. Expression of SGLT1 in the Mouse Endometrial Epithelium and its Role in Early Embryonic Development and Implantation. Reprod. Sci. 28, 3094–3108 (2021). https://doi.org/10.1007/s43032-021-00480-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-021-00480-y

Keywords

Navigation