Skip to main content
Log in

Protective Effects from the Ischemic/Hypoxic Stress Induced by Labor in the High-Altitude Tibetan Placenta

  • Maternal Fetal Medicine/Biology. Short Communication
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Labor and vaginal delivery cause acute ischemic/hypoxic insult to the placenta. Previous studies demonstrate that placentas from high altitude non-natives showed blunted responses to ischemic/hypoxic insult caused by labor and vaginal birth, and there were some differences in the ATP/ADP production ratio. We hypothesized that adapted highlanders would not have a stress response to the acute hypoxia/ischemia of labor. Tibetan laboring (n = 10) and non-laboring (n = 5) and European descendants laboring (n = 10) and non-laboring (n = 5) high-altitude placentas were analyzed using genome-wide expression array analysis. There was no evidence for ischemic/hypoxic stress in high-altitude Tibetan laboring as compared with non-laboring placentas, while there were differences in gene expression between laboring and non-laboring placentas from high-altitude European descendants. Our results provide evidence for adaptation to acute hypoxic ischemic insult caused by labor and vaginal birth in placentas in a high-altitude native Tibetan population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  1. Brar HS, Platt LD, DeVore GR, Horenstein J, Medearis AL. Qualitative assessment of maternal uterine and fetal umbilical artery blood flow and resistance in laboring patients by Doppler velocimetry. Am J Obstet Gynecol. 1988;158(4):952–6. https://doi.org/10.1016/0002-9378(88)90100-7.

    Article  CAS  PubMed  Google Scholar 

  2. Cindrova-Davies T, Yung HW, Johns J, Spasic-Boskovic O, Korolchuk S, Jauniaux E, et al. Oxidative stress, gene expression, and protein changes induced in the human placenta during labor. Am J Pathol. 2007;171(4):1168–79. https://doi.org/10.2353/ajpath.2007.070528.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. D'Angelo G, Granese R, Marseglia L, Impellizzeri P, Alibrandi A, Palmara A, et al. High mobility group box 1 and markers of oxidative stress in human cord blood. Pediatr Int. 2019;61(3):264–70. https://doi.org/10.1111/ped.13795.

    Article  CAS  PubMed  Google Scholar 

  4. D'Angelo G, Marseglia L, Granese R, Di Benedetto A, Giacobbe A, Impellizzeri P, et al. Different concentration of human cord blood HMGB1 according to delivery and labour: a pilot study. Cytokine. 2018;108:53–6. https://doi.org/10.1016/j.cyto.2018.03.019.

    Article  CAS  PubMed  Google Scholar 

  5. Stjernholm YV, Nyberg A, Cardell M, Hoybye C. Circulating maternal cortisol levels during vaginal delivery and elective cesarean section. Arch Gynecol Obstet. 2016;294(2):267–71. https://doi.org/10.1007/s00404-015-3981-x.

    Article  CAS  PubMed  Google Scholar 

  6. Tissot van Patot MC, Murray AJ, Beckey V, Cindrova-Davies T, Johns J, Zwerdlinger L, et al. Human placental metabolic adaptation to chronic hypoxia, high altitude: hypoxic preconditioning. Am J Phys Regul Integr Comp Phys. 2010;298(1):R166–72. https://doi.org/10.1152/ajpregu.00383.2009.

    Article  CAS  Google Scholar 

  7. Yung HW, Cox M. Tissot van Patot M, Burton GJ. Evidence of endoplasmic reticulum stress and protein synthesis inhibition in the placenta of non-native women at high altitude. FASEB J. 2012;26(5):1970–81. https://doi.org/10.1096/fj.11-190082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tissot van Patot MC, Bendrick-Peart J, Beckey VE, Serkova N, Zwerdlinger L. Greater vascularity, lowered HIF-1/DNA binding, and elevated GSH as markers of adaptation to in vivo chronic hypoxia. Am J Phys Lung Cell Mol Phys. 2004;287(3):L525–32. https://doi.org/10.1152/ajplung.00203.2003.

    Article  CAS  Google Scholar 

  9. Beall CM, Song K, Elston RC, Goldstein MC. Higher offspring survival among Tibetan women with high oxygen saturation genotypes residing at 4,000 m. Proc Natl Acad Sci U S A. 2004;101(39):14300–4. https://doi.org/10.1073/pnas.0405949101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Zamudio S, Droma T, Norkyel KY, Acharya G, Zamudio JA, Niermeyer SN, et al. Protection from intrauterine growth retardation in Tibetans at high altitude. Am J Phys Anthropol. 1993;91(2):215–24. https://doi.org/10.1002/ajpa.1330910207.

    Article  CAS  PubMed  Google Scholar 

  11. Moore LG, Zamudio S, Zhuang J, Sun S, Droma T. Oxygen transport in tibetan women during pregnancy at 3,658 m. Am J Phys Anthropol. 2001;114(1):42–53. https://doi.org/10.1002/1096-8644(200101)114:1<42::AID-AJPA1004>3.0.CO;2-B.

    Article  CAS  PubMed  Google Scholar 

  12. Moore LG, Young D, McCullough RE, Droma T, Zamudio S. Tibetan protection from intrauterine growth restriction (IUGR) and reproductive loss at high altitude. Am J Hum Biol. 2001;13(5):635–44. https://doi.org/10.1002/ajhb.1102.

    Article  CAS  PubMed  Google Scholar 

  13. Bigham AW, Julian CG, Wilson MJ, Vargas E, Browne VA, Shriver MD, et al. Maternal PRKAA1 and EDNRA genotypes are associated with birth weight, and PRKAA1 with uterine artery diameter and metabolic homeostasis at high altitude. Physiol Genomics. 2014;46(18):687–97. https://doi.org/10.1152/physiolgenomics.00063.2014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kiewe P, Gueller S, Komor M, Stroux A, Thiel E, Hofmann WK. Prediction of qualitative outcome of oligonucleotide microarray hybridization by measurement of RNA integrity using the 2100 bioanalyzer capillary electrophoresis system. Ann Hematol. 2009;88(12):1177–83. https://doi.org/10.1007/s00277-009-0751-5.

    Article  CAS  PubMed  Google Scholar 

  15. Irizarry RA, Bolstad BM, Collin F, Cope LM, Hobbs B, Speed TP. Summaries of Affymetrix GeneChip probe level data. Nucleic Acids Res. 2003;31(4):e15. https://doi.org/10.1093/nar/gng015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Carvalho BS, Irizarry RA. A framework for oligonucleotide microarray preprocessing. Bioinformatics. 2010;26(19):2363–7. https://doi.org/10.1093/bioinformatics/btq431.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc. 1995;57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x.

    Article  Google Scholar 

  18. Goh SH, Lee YT, Bhanu NV, Cam MC, Desper R, Martin BM, et al. A newly discovered human alpha-globin gene. Blood. 2005;106(4):1466–72. https://doi.org/10.1182/blood-2005-03-0948.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Gelfi C, De Palma S, Ripamonti M, Eberini I, Wait R, Bajracharya A, et al. New aspects of altitude adaptation in Tibetans: a proteomic approach. FASEB J. 2004;18(3):612–4. https://doi.org/10.1096/fj.03-1077fje.

    Article  CAS  PubMed  Google Scholar 

  20. Horscroft JA, Kotwica AO, Laner V, West JA, Hennis PJ, Levett DZH, et al. Metabolic basis to Sherpa altitude adaptation. Proc Natl Acad Sci U S A. 2017;114(24):6382–7. https://doi.org/10.1073/pnas.1700527114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Duan C. Hypoxia-inducible factor 3 biology: complexities and emerging themes. Am J Phys Cell Phys. 2016;310(4):C260–9. https://doi.org/10.1152/ajpcell.00315.2015.

    Article  Google Scholar 

  22. Wang CY, Wang ZY, Xie JW, Cai JH, Wang T, Xu Y, et al. CD36 upregulation mediated by intranasal LV-NRF2 treatment mitigates hypoxia-induced progression of Alzheimer's-like pathogenesis. Antioxid Redox Signal. 2014;21(16):2208–30. https://doi.org/10.1089/ars.2014.5845.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Minchenko DO, Tsymbal DO, Riabovol OO, Viletska YM, Lahanovska YO, Sliusar MY, et al. Hypoxic regulation of EDN1, EDNRA, EDNRB, and ECE1 gene expressions in ERN1 knockdown U87 glioma cells. Endocr Regul. 2019;53(4):250–62. https://doi.org/10.2478/enr-2019-0025.

    Article  PubMed  Google Scholar 

  24. Ramazani Y, Knops N, Elmonem MA, Nguyen TQ, Arcolino FO, van den Heuvel L, et al. Connective tissue growth factor (CTGF) from basics to clinics. Matrix Biol. 2018;68–69:44–66. https://doi.org/10.1016/j.matbio.2018.03.007.

    Article  CAS  PubMed  Google Scholar 

  25. Zhang L, Zhao F, Yang C, Tang Q, Zhang R, Li J, et al. Hypomethylation of CTGF promoter in placenta and peripheral blood of pre-eclampsia women. Reprod Sci. 2020;27(2):468–76. https://doi.org/10.1007/s43032-019-00038-z.

    Article  PubMed  Google Scholar 

  26. Liu Z, Skafar DF, Kilburn B, Das SK, Armant DR. Extraembryonic heparin-binding epidermal growth factor-like growth factor deficiency compromises placentation in mice. Biol Reprod. 2019;100(1):217–26. https://doi.org/10.1093/biolre/ioy174.

    Article  PubMed  Google Scholar 

  27. De Francesco EM, Sims AH, Maggiolini M, Sotgia F, Lisanti MP, Clarke RB. GPER mediates the angiocrine actions induced by IGF1 through the HIF-1alpha/VEGF pathway in the breast tumor microenvironment. Breast Cancer Res. 2017;19(1):129. https://doi.org/10.1186/s13058-017-0923-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cuffe JS, Walton SL, Steane SE, Singh RR, Simmons DG, Moritz KM. The effects of gestational age and maternal hypoxia on the placental renin angiotensin system in the mouse. Placenta. 2014;35(11):953–61. https://doi.org/10.1016/j.placenta.2014.09.004.

    Article  CAS  PubMed  Google Scholar 

  29. Wolf N, Yang W, Dunk CE, Gashaw I, Lye SJ, Ring T, et al. Regulation of the matricellular proteins CYR61 (CCN1) and NOV (CCN3) by hypoxia-inducible factor-1{alpha} and transforming-growth factor-{beta}3 in the human trophoblast. Endocrinology. 2010;151(6):2835–45. https://doi.org/10.1210/en.2009-1195.

    Article  CAS  PubMed  Google Scholar 

  30. Ji SQ, Su XL, Cheng WL, Zhang HJ, Zhao YQ, Han ZX. Down-regulation of CD74 inhibits growth and invasion in clear cell renal cell carcinoma through HIF-1alpha pathway. Urol Oncol. 2014;32(2):153–61. https://doi.org/10.1016/j.urolonc.2012.09.013.

    Article  CAS  PubMed  Google Scholar 

  31. Alba-Betancourt C, Luna-Acosta JL, Ramirez-Martinez CE, Avila-Gonzalez D, Granados-Avalos E, Carranza M, et al. Neuro-protective effects of growth hormone (GH) after hypoxia-ischemia injury in embryonic chicken cerebellum. Gen Comp Endocrinol. 2013;183:17–31. https://doi.org/10.1016/j.ygcen.2012.12.004.

    Article  CAS  PubMed  Google Scholar 

  32. Beall CM, Reichsman AB. Hemoglobin levels in a Himalayan high altitude population. Am J Phys Anthropol. 1984;63(3):301–6. https://doi.org/10.1002/ajpa.1330630306.

    Article  CAS  PubMed  Google Scholar 

  33. Beall CM. A comparison of chest morphology in high altitude Asian and Andean populations. Hum Biol. 1982;54(1):145–63.

    CAS  PubMed  Google Scholar 

  34. Li C, Li X, Liu J, Fan X, You G, Zhao L, et al. Investigation of the differences between the Tibetan and Han populations in the hemoglobin-oxygen affinity of red blood cells and in the adaptation to high-altitude environments. Hematology. 2018;23(5):309–13. https://doi.org/10.1080/10245332.2017.1396046.

    Article  CAS  PubMed  Google Scholar 

  35. Sun SF, Droma TS, Zhang JG, Tao JX, Huang SY, McCullough RG, et al. Greater maximal O2 uptakes and vital capacities in Tibetan than Han residents of Lhasa. Respir Physiol. 1990;79(2):151–61. https://doi.org/10.1016/0034-5687(90)90015-q.

    Article  CAS  PubMed  Google Scholar 

  36. Droma T, McCullough RG, McCullough RE, Zhuang JG, Cymerman A, Sun SF, et al. Increased vital and total lung capacities in Tibetan compared to Han residents of Lhasa (3,658 m). Am J Phys Anthropol. 1991;86(3):341–51. https://doi.org/10.1002/ajpa.1330860303.

    Article  CAS  PubMed  Google Scholar 

  37. Zhuang J, Droma T, Sutton JR, McCullough RE, McCullough RG, Groves BM, et al. Autonomic regulation of heart rate response to exercise in Tibetan and Han residents of Lhasa (3,658 m). J Appl Physiol (1985). 1993;75(5):1968–73. https://doi.org/10.1152/jappl.1993.75.5.1968.

    Article  CAS  Google Scholar 

  38. Groves BM, Droma T, Sutton JR, McCullough RG, McCullough RE, Zhuang J, et al. Minimal hypoxic pulmonary hypertension in normal Tibetans at 3,658 m. J Appl Physiol (1985). 1993;74(1):312–8. https://doi.org/10.1152/jappl.1993.74.1.312.

    Article  CAS  Google Scholar 

  39. Niermeyer S, Yang P, Shanmina, Drolkar, Zhuang J, Moore LG. Arterial oxygen saturation in Tibetan and Han infants born in Lhasa, Tibet. N Engl J Med. 1995;333(19):1248–52. https://doi.org/10.1056/NEJM199511093331903.

    Article  CAS  PubMed  Google Scholar 

  40. Zhuang J, Droma T, Sutton JR, Groves BM, McCullough RE, McCullough RG, et al. Smaller alveolar-arterial O2 gradients in Tibetan than Han residents of Lhasa (3658 m). Respir Physiol. 1996;103(1):75–82. https://doi.org/10.1016/0034-5687(95)00041-0.

    Article  CAS  PubMed  Google Scholar 

  41. Li C, Li X, Xiao J, Liu J, Fan X, Fan F, et al. Genetic changes in the EPAS1 gene between Tibetan and Han ethnic groups and adaptation to the plateau hypoxic environment. PeerJ. 2019;7:e7943. https://doi.org/10.7717/peerj.7943.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Heinrich EC, Wu L, Lawrence ES, Cole AM, Anza-Ramirez C, Villafuerte FC, et al. Genetic variants at the EGLN1 locus associated with high-altitude adaptation in Tibetans are absent or found at low frequency in highland Andeans. Ann Hum Genet. 2019;83(3):171–6. https://doi.org/10.1111/ahg.12299.

    Article  CAS  PubMed  Google Scholar 

  43. Xu S, Li S, Yang Y, Tan J, Lou H, Jin W, et al. A genome-wide search for signals of high-altitude adaptation in Tibetans. Mol Biol Evol. 2011;28(2):1003–11. https://doi.org/10.1093/molbev/msq277.

    Article  CAS  PubMed  Google Scholar 

  44. Beall CM, Cavalleri GL, Deng L, Elston RC, Gao Y, Knight J, et al. Natural selection on EPAS1 (HIF2alpha) associated with low hemoglobin concentration in Tibetan highlanders. Proc Natl Acad Sci U S A. 2010;107(25):11459–64. https://doi.org/10.1073/pnas.1002443107.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZX, Pool JE, et al. Sequencing of 50 human exomes reveals adaptation to high altitude. Science. 2010;329(5987):75–8. https://doi.org/10.1126/science.1190371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Simonson TS, Yang Y, Huff CD, Yun H, Qin G, Witherspoon DJ, et al. Genetic evidence for high-altitude adaptation in Tibet. Science. 2010;329(5987):72–5. https://doi.org/10.1126/science.1189406.

    Article  CAS  PubMed  Google Scholar 

  47. Lorenzo FR, Huff C, Myllymaki M, Olenchock B, Swierczek S, Tashi T, et al. A genetic mechanism for Tibetan high-altitude adaptation. Nat Genet. 2014;46(9):951–6. https://doi.org/10.1038/ng.3067.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Bhandari S, Cavalleri GL. Population history and altitude-related adaptation in the Sherpa. Front Physiol. 2019;10:1116. https://doi.org/10.3389/fphys.2019.01116.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jeong C, Witonsky DB, Basnyat B, Neupane M, Beall CM, Childs G, et al. Detecting past and ongoing natural selection among ethnically Tibetan women at high altitude in Nepal. PLoS Genet. 2018;14(9):e1007650. https://doi.org/10.1371/journal.pgen.1007650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Burton GJ, Fowden AL, Thornburg KL. Placental origins of chronic disease. Physiol Rev. 2016;96(4):1509–65. https://doi.org/10.1152/physrev.00029.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank all high-altitude pregnant women for participating in this study.

Funding

This project has been supported by the National Basic Research Program of China (Grant No.2012CB518200), the Program of International Science and Technology Cooperation of China (Grant No.2011DFA32720), and the National Natural Science Foundation of China (Grant No. 81641081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wuren Tana.

Ethics declarations

Conflicting Interests

None Declared.

Ethical Content

The research ethics committee from Qinghai University Medical College (Qinghai, China), and the Colorado Multiple Institutional Review Board (Aurora, Colorado) approved this study. Human term (38 to 40 weeks) placentas were obtained from women of Tibetan ancestry undergoing normal pregnancies at the Yushu Prefecture Hospital (3780 m) in Qinghai Province, with informed written consent in Tibetan language and explained by local Tibetan doctors.

Non-native high-altitude placental tissues were donated by the Centre for Trophoblast Research at the University of Cambridge, UK; the samples used in this study were obtained from 15 women of European descent, recruited in Leadville, CO, with informed written consent form explained by researcher and local mid wives.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 13 kb).

ESM 2

(XLSX 22405 kb).

ESM 3

(XLS 232 kb).

ESM 4

(PDF 644 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tana, W., Noryung, T., Burton, G.J. et al. Protective Effects from the Ischemic/Hypoxic Stress Induced by Labor in the High-Altitude Tibetan Placenta. Reprod. Sci. 28, 659–664 (2021). https://doi.org/10.1007/s43032-020-00443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00443-9

Keywords

Navigation