Skip to main content
Log in

Kisspeptins and Glucose Homeostasis in Pregnancy: Implications for Gestational Diabetes Mellitus—a Review Article

  • Review
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Gestational diabetes mellitus (GDM) is becoming an increasingly common complication of pregnancy with the global rise of obesity. The precise pathophysiological mechanisms underpinning GDM are yet to be fully elucidated. Kisspeptin, a peptide encoded by the KISS1 gene, is mainly expressed by placental syncytiotrophoblasts during pregnancy. It is an essential ligand for kisspeptin 1 receptor (KISS1R), which is expressed by both the villous and invasive extravillous cytotrophoblast cells. Circulatory kisspeptins rise dramatically in the second and third trimester of pregnancy coinciding with the period of peak insulin resistance. Kisspeptins stimulate glucose-dependent insulin secretion and decreased plasma levels inversely correlate with markers of insulin resistance. Additionally, kisspeptins play a critical role in the regulation of appetite, energy utilisation and glucose homeostasis. GDM pregnancies have been associated with low circulatory kisspeptins, despite higher placental kisspeptin and KISS1R expression. This review evaluates the role of kisspeptin in insulin secretion, resistance and regulation of appetite as well as its implications in GDM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Guariguata L, Linnenkamp U, Beagley J, Whiting DR, Cho NH. Global estimates of the prevalence of hyperglycaemia in pregnancy. Diabetes Res Clin Pract. 2014;103(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  2. Adam S, Rheeder P. Screening for gestational diabetes mellitus in a South African population: prevalence, comparison of diagnostic criteria and the role of risk factors. S Afr Med J. 2017;107(6):523–7.

    Article  CAS  PubMed  Google Scholar 

  3. Damm P, Houshmand-Oeregaard A, Kelstrup L, Lauenborg J, Mathiesen ER, Clausen TD. Gestational diabetes mellitus and long-term consequences for mother and offspring: a view from Denmark. Diabetologia. 2016;59(7):1396–9.

    Article  CAS  PubMed  Google Scholar 

  4. Metzger BE, Lowe LP, Dyer AR, Trimble ER, Chaovarindr U, Coustan DR, et al. Hyperglycemia and adverse pregnancy outcomes. N Engl J Med. 2008;358(19):1991–2002.

    Article  PubMed  Google Scholar 

  5. Eliana M, Wendland MRT, Falavigna M, Trujillo J, Dode MA, Campos MA, et al. Gestational diabetes and pregnancy outcomes - a systematic review of the World Health Organization (WHO) and the International Association of Diabetes in Pregnancy Study Groups (IADPSG) diagnostic criteria. BMC Pregnancy and Childbirth. 2012;12(13):1–13.

    Google Scholar 

  6. Ryan EA, Enns L. Role of gestational hormones in the induction of insulin resistance. J Clin Endocrinol Metab. 1988;67(2):341–7.

    Article  CAS  PubMed  Google Scholar 

  7. Buchanan TA. Pancreatic B-cell defects in gestational diabetes: implications for the pathogenesis and prevention of type 2 diabetes. J Clin Endocrinol Metab. 2001;86(3):989–93.

    Article  CAS  PubMed  Google Scholar 

  8. Ryan EA, O’Sullivan MJ, Skyler JS. Insulin action during pregnancy: studies with the euglycemic clamp technique. Diabetes. 1985;34(4):380–9.

    Article  CAS  PubMed  Google Scholar 

  9. Lee J-H, Miele ME, Hicks DJ, Phillips KK, Trent JM, Weissman BE, et al. KiSS-1, a novel human malignant melanoma metastasis-suppressor gene. J Natl Cancer Inst. 1996;88(23):1731–7.

    Article  CAS  PubMed  Google Scholar 

  10. Bhattacharya M, Babwah AV. Kisspeptin: beyond the brain. Endocrinology. 2015;156(4):1218–27.

    Article  CAS  PubMed  Google Scholar 

  11. Han SK, Gottsch ML, Lee KJ, Popa SM, Smith JT, Jakawich SK, et al. Activation of gonadotropin-releasing hormone neurons by kisspeptin as a neuroendocrine switch for the onset of puberty. J Neurosci. 2005;25(49):11349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. de Roux N, Genin E, Carel J-C, Matsuda F, Chaussain J-L, Milgrom E. Hypogonadotropic hypogonadism due to loss of function of the KiSS1-derived peptide receptor GPR54. Proc Natl Acad Sci. 2003;100(19):10972–6.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Seminara SB, Messager S, Chatzidaki EE, Thresher RR, Acierno JS Jr, Shagoury JK, et al. The GPR54 gene as a regulator of puberty. N Engl J Med. 2003;349(17):1614–27.

    Article  CAS  PubMed  Google Scholar 

  14. Bilban M, Ghaffari-Tabrizi N, Hintermann E, Bauer S, Molzer S, Zoratti C, et al. Kisspeptin-10, a KISS-1/metastin-derived decapeptide, is a physiological invasion inhibitor of primary human trophoblasts. J Cell Sci. 2004;117(Pt 8):1319–28.

    Article  CAS  PubMed  Google Scholar 

  15. Fayazi M, Calder M, Bhattacharya M, Vilos GA, Power S, Babwah AV. The pregnant mouse uterus exhibits a functional kisspeptin/KISS1R signaling system on the day of embryo implantation. Reprod Biol Endocrinol. 2015;13:105.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bowe J, King A, Kinsey-Jones J, Foot V, Li X, O’Byrne K, et al. Kisspeptin stimulation of insulin secretion: mechanisms of action in mouse islets and rats. Diabetologia. 2009;52(5):855–62.

    Article  CAS  PubMed  Google Scholar 

  17. Bowe JE, Hill TG, Hunt KF, Smith LI, Simpson SJ, Amiel SA, Jones PM. A role for placental kisspeptin in β cell adaptation to pregnancy. JCI Insight. 2019;4(20):e124540.

    Article  PubMed Central  Google Scholar 

  18. Izzi-Engbeaya C, Comninos AN, Clarke SA, Jomard A, Yang L, Jones S, et al. The effects of kisspeptin on beta-cell function, serum metabolites and appetite in humans. Diabetes Obes Metab. 2018;20(12):2800–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kolodziejski PA, Pruszynska-Oszmalek E, Korek E, Sassek M, Szczepankiewicz D, Kaczmarek P, et al. Serum levels of spexin and kisspeptin negatively correlate with obesity and insulin resistance in women. Physiol Res. 2018;67(1):45–56.

    Article  CAS  PubMed  Google Scholar 

  20. Panidis D, Rousso D, Koliakos G, Kourtis A, Katsikis I, Farmakiotis D, et al. Plasma metastin levels are negatively correlated with insulin resistance and free androgens in women with polycystic ovary syndrome. Fertil Steril. 2006;85(6):1778–83.

    Article  CAS  PubMed  Google Scholar 

  21. Kotani M, Detheux M, Vandenbogaerde A, Communi D, Vanderwinden JM, Le Poul E, et al. The metastasis suppressor gene KiSS-1 encodes kisspeptins, the natural ligands of the orphan G protein-coupled receptor GPR54. J Biol Chem. 2001;276(37):34631–6.

    Article  CAS  PubMed  Google Scholar 

  22. Lee DK, Nguyen T, O’Neill GP, Cheng R, Liu Y, Howard AD, et al. Discovery of a receptor related to the galanin receptors. FEBS Lett. 1999;446(1):103–7.

    Article  CAS  PubMed  Google Scholar 

  23. Hauge-Evans A, Richardson C, Milne H, Christie MR, Persaud S, Jones P. A role for kisspeptin in islet function. Diabetologia. 2006;49(9):2131–5.

    Article  CAS  PubMed  Google Scholar 

  24. Mead EJ, Maguire JJ, Kuc RE, Davenport AP. Kisspeptins are novel potent vasoconstrictors in humans, with a discrete localization of their receptor, G protein-coupled receptor 54, to atherosclerosis-prone vessels. Endocrinology. 2007;148(1):140–7.

    Article  CAS  PubMed  Google Scholar 

  25. Muir AI, Chamberlain L, Elshourbagy NA, Michalovich D, Moore DJ, Calamari A, et al. AXOR12, a novel human G protein-coupled receptor, activated by the peptide KiSS-1. J Biol Chem. 2001;276(31):28969–75.

    Article  CAS  PubMed  Google Scholar 

  26. Liu X, Lee K, Herbison AE. Kisspeptin excites gonadotropin-releasing hormone neurons through a phospholipase C/calcium-dependent pathway regulating multiple ion channels. Endocrinology. 2008;149(9):4605–14.

    Article  CAS  PubMed  Google Scholar 

  27. Pampillo M, Camuso N, Taylor JE, Szereszewski JM, Ahow MR, Zajac M, et al. Regulation of GPR54 signaling by GRK2 and {beta}-arrestin. Mol Endocrinol. 2009;23(12):2060–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wu S, Zhang H, Tian J, Liu L, Dong Y, Mao T. Expression of kisspeptin/GPR54 and PIBF/PR in the first trimester trophoblast and decidua of women with recurrent spontaneous abortion. Pathol Res Pract. 2014;210(1):47–54.

    Article  CAS  PubMed  Google Scholar 

  29. Cartwright JE, Williams PJ. Altered placental expression of kisspeptin and its receptor in pre-eclampsia. J Endocrinol. 2012;214(1):79–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park DW, Lee SK, Hong SR, Han AR, Kwak-Kim J, Yang KM. Expression of Kisspeptin and its receptor GPR54 in the first trimester trophoblast of women with recurrent pregnancy loss. Am J Reprod Immunol. 2012;67(2):132–9.

    Article  CAS  PubMed  Google Scholar 

  31. Janneau J-L, Maldonado-Estrada J, Tachdjian GR, Miran I, Motté N, Saulnier P, et al. Transcriptional expression of genes involved in cell invasion and migration by normal and tumoral trophoblast cells. J Clin Endocrinol Metab. 2002;87(11):5336–9.

    Article  CAS  PubMed  Google Scholar 

  32. Brosens A. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet Gynecol Annu. 1972;1:177–91.

    CAS  PubMed  Google Scholar 

  33. Khong T, De Wolf F, Robertson W, Brosens I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. BJOG. 1986;93(10):1049–59.

    Article  CAS  Google Scholar 

  34. Hiden U, Bilban M, Knofler M, Desoye G. Kisspeptins and the placenta: regulation of trophoblast invasion. Rev Endocr Metab Disord. 2007;8(1):31–9.

    Article  CAS  PubMed  Google Scholar 

  35. Horikoshi Y, Matsumoto H, Takatsu Y, Ohtaki T, Kitada C, Usuki S, et al. Dramatic elevation of plasma metastin concentrations in human pregnancy: metastin as a novel placenta-derived hormone in humans. J Clin Endocrinol Metab. 2003;88(2):914–9.

    Article  CAS  PubMed  Google Scholar 

  36. Ohtaki T, Shintani Y, Honda S, Matsumoto H, Hori A, Kanehashi K, et al. Metastasis suppressor gene KiSS-1 encodes peptide ligand of a G-protein-coupled receptor. Nature. 2001;411(6837):613–7.

    Article  CAS  PubMed  Google Scholar 

  37. Herreboudt A, Kyle V, Lawrence J, Doran J, Colledge W. Kiss1 mutant placentas show normal structure and function in the mouse. Placenta. 2015;36(1):52–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Pallais JC, Bo-Abbas Y, Pitteloud N, Crowley WF Jr, Seminara SB. Neuroendocrine, gonadal, placental, and obstetric phenotypes in patients with IHH and mutations in the G-protein coupled receptor, GPR54. Mol Cell Endocrinol. 2006;25:70–7.

    Article  Google Scholar 

  39. Jayasena CN, Abbara A, Izzi-Engbeaya C, Comninos AN, Harvey RA, Gonzalez Maffe J, et al. Reduced levels of plasma kisspeptin during the antenatal booking visit are associated with increased risk of miscarriage. J Clin Endocrinol Metab. 2014;99(12):E2652–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khaleed AA, Walid M. Serum kisspeptin-10 levels in pregnant women complicated with intrauterine growth restriction with or without preeclampsia. Med J Cairo Univ. 2018;86(June):1975–82.

    Article  Google Scholar 

  41. Cetkovic A, Miljic D, Ljubic A, Patterson M, Ghatei M, Stamenkovic J, et al. Plasma kisspeptin levels in pregnancies with diabetes and hypertensive disease as a potential marker of placental dysfunction and adverse perinatal outcome. Endocr Res. 2012;37(2):78–88.

    Article  PubMed  Google Scholar 

  42. Matjila M, Millar R, van der Spuy Z, Katz A. Elevated placental expression at the maternal-fetal interface but diminished maternal circulatory kisspeptin in preeclamptic pregnancies. Pregnancy Hypertens. 2016;6(1):79–87.

    Article  PubMed  Google Scholar 

  43. Madazli R, Bulut B, Tuten A, Aydin B, Demirayak G, Kucur M. First-trimester maternal serum metastin, placental growth factor and chitotriosidase levels in pre-eclampsia. Eur J Obstet Gynecol Reprod Biol. 2012;164(2):146–9.

    Article  CAS  PubMed  Google Scholar 

  44. Qiao C, Wang C, Zhao J, Liu C, Shang T. Elevated expression of KiSS-1 in placenta of Chinese women with early-onset preeclampsia. PLoS One. 2012;7(11):48937.

    Article  Google Scholar 

  45. Kapustin RV, Drobintseva AO, Alekseenkova EN, Onopriychuk AR, Arzhanova ON, Polyakova VO, Kvetnoy IM. Placental protein expression of kisspeptin-1 (KISS1) and the kisspeptin-1 receptor (KISS1R) in pregnancy complicated by diabetes mellitus or preeclampsia. Arch Gynecol Obstet. 2020;301(2):437–45.

    Article  CAS  PubMed  Google Scholar 

  46. Schwetz TA, Reissaus CA, Piston DW. Differential stimulation of insulin secretion by GLP-1 and kisspeptin-10. PLoS One. 2014;9(11):113020.

    Article  Google Scholar 

  47. Bowe JE, Foot VL, Amiel SA, Huang GC, Lamb M, Lakey J, et al. GPR54 peptide agonists stimulate insulin secretion from murine, porcine and human islets. Islets. 2012;4(1):20–3.

    Article  PubMed  Google Scholar 

  48. Vikman J, Ahren B. Inhibitory effect of kisspeptins on insulin secretion from isolated mouse islets. Diabetes Obes Metab. 2009;11(Suppl 4):197–201.

    Article  CAS  PubMed  Google Scholar 

  49. Silvestre RA, Egido EM, Hernandez R, Marco J. Kisspeptin-13 inhibits insulin secretion without affecting glucagon or somatostatin release: study in the perfused rat pancreas. J Endocrinol. 2008;196(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  50. Wahab F, Riaz T, Shahab M. Study on the effect of peripheral kisspeptin administration on basal and glucose-induced insulin secretion under fed and fasting conditions in the adult male rhesus monkey (Macaca mulatta). Horm Metab Res. 2011;43(1):37–42.

    Article  CAS  PubMed  Google Scholar 

  51. Stengel A, Wang L, Goebel-Stengel M, Taché Y. Centrally injected kisspeptin reduces food intake by increasing meal intervals in mice. Neuroreport. 2011;22(5):253–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Andreozzi F, Mannino GC, Mancuso E, Spiga R, Perticone F, Sesti G. Plasma kisspeptin levels are associated with insulin secretion in nondiabetic individuals. PLoS One. 2017;12(6):0179834.

    Article  Google Scholar 

  53. Qi Y, Takahashi N, Hileman SM, Patel HR, Berg AH, Pajvani UB, et al. Adiponectin acts in the brain to decrease body weight. Nat Med. 2004;10(5):524–9.

    Article  CAS  PubMed  Google Scholar 

  54. Date Y, Shimbara T, Koda S, Toshinai K, Ida T, Murakami N, et al. Peripheral ghrelin transmits orexigenic signals through the noradrenergic pathway from the hindbrain to the hypothalamus. Cell Metab. 2006;4(4):323–31.

    Article  CAS  PubMed  Google Scholar 

  55. MacDonald PE, El-Kholy W, Riedel MJ, Salapatek AM, Light PE, Wheeler MB. The multiple actions of GLP-1 on the process of glucose-stimulated insulin secretion. Diabetes. 2002;51(Suppl 3):S434–42.

    Article  CAS  PubMed  Google Scholar 

  56. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature. 1994;372(6505):425–32.

    Article  CAS  PubMed  Google Scholar 

  57. Tolson KP, Garcia C, Yen S, Simonds S, Stefanidis A, Lawrence A, et al. Impaired kisspeptin signaling decreases metabolism and promotes glucose intolerance and obesity. J Clin Invest. 2014;124(7):3075–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Gottsch ML, Cunningham MJ, Smith JT, Popa SM, Acohido BV, Crowley WF, et al. A role for kisspeptins in the regulation of gonadotropin secretion in the mouse. Endocrinology. 2004;145(9):4073–7.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ezekiel Musa.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Musa, E., Matjila, M. & Levitt, N.S. Kisspeptins and Glucose Homeostasis in Pregnancy: Implications for Gestational Diabetes Mellitus—a Review Article. Reprod. Sci. 29, 321–327 (2022). https://doi.org/10.1007/s43032-020-00437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00437-7

Keywords

Navigation