Skip to main content
Log in

Dynamic Changes of Fetal-Derived Hypermethylated RASSF1A and Septin 9 Sequences in Maternal Plasma

  • Maternal Fetal Medicine/Biology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

DNA methylation has a tissue-specific feature, and placenta has distinct methylation patterns from peripheral blood cells. Although fetal/placental-derived cell free DNA (cfDNA) in the maternal blood has been reported in recent decades, systematic exploration of dynamic changes of the placental epigenetic signatures across gestation is lacking. The primary goal of this study was to characterize prenatal and postnatal methylation levels of placental-sourced RASSF1A and Septin 9 sequences in maternal plasma. Here, we used a quantitative methylation-sensitive PCR (qMS-PCR) assay to check the methylation status of RASSF1A and Septin 9 in placental tissues of pregnant women and plasma samples from non-pregnant individuals. Then, we examined the methylation levels of the two targets in maternal plasma from expectant women at different gestational ages and postdelivery. Hypermethylated RASSF1A and Septin 9 were identified in placental samples but undetectable in peripheral blood of healthy non-pregnant women. Further, hypermethylated RASSF1A sequence was found in all three trimesters of pregnancy except for early gestation (8 weeks). Moreover, methylation scores of the two targets increased as pregnancy progressed. In addition, hypermethylated RASSF1A sequence was detectable in maternal plasma from 12 h (one case) to 24 h postdelivery (three cases) in 18 pregnant women. Our data on the variation of fetal-sourced methylated RASSF1A levels in maternal plasma in relation to gestational age provide a useful basis for improving the reliability of the methylation assay for non-invasive prenatal diagnosis (NIPD) in clinical practice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Haber DA, Velculescu VE. Blood-based analyses of cancer: circulating tumor cells and circulating tumor DNA. Cancer Discov. 2014;4(6):650–61. https://doi.org/10.1158/2159-8290.CD-13-1014.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ignatiadis M, Lee M, Jeffrey SS. Circulating tumor cells and circulating tumor DNA: challenges and opportunities on the path to clinical utility. Clin Cancer Res. 2015;21(21):4786–800. https://doi.org/10.1158/1078-0432.CCR-14-1190.

    Article  CAS  PubMed  Google Scholar 

  3. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med. 2014;6(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Roy D, Tiirikainen M. Diagnostic power of DNA methylation classifiers for early detection of Cancer. Trends Cancer. 2020;6(2):78–81. https://doi.org/10.1016/j.trecan.2019.12.006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Tjoa ML, Cindrova-Davies T, Spasic-Boskovic O, Bianchi DW, Burton GJ. Trophoblastic oxidative stress and the release of cell-free feto-placental DNA. Am J Pathol. 2006;169(2):400–4. https://doi.org/10.2353/ajpath.2006.060161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Chu T, Burke B, Bunce K, Surti U, Allen Hogge W, Peters DG. A microarray-based approach for the identification of epigenetic biomarkers for the noninvasive diagnosis of fetal disease. Prenat Diagn. 2009;29(11):1020–30. https://doi.org/10.1002/pd.2335.

    Article  CAS  PubMed  Google Scholar 

  7. Papageorgiou EA, Fiegler H, Rakyan V, Beck S, Hulten M, Lamnissou K, et al. Sites of differential DNA methylation between placenta and peripheral blood: molecular markers for noninvasive prenatal diagnosis of aneuploidies. Am J Pathol. 2009;174(5):1609–18. https://doi.org/10.2353/ajpath.2009.081038.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jensen TJ, Kim SK, Zhu Z, Chin C, Gebhard C, Lu T, et al. Whole genome bisulfite sequencing of cell-free DNA and its cellular contributors uncovers placenta hypomethylated domains. Genome Biol. 2015;16:78. https://doi.org/10.1186/s13059-015-0645-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kim HJ, Kim SY, Lim JH, Kwak DW, Park SY, Ryu HM. Quantification and application of potential epigenetic markers in maternal plasma of pregnancies with hypertensive disorders. Int J Mol Sci. 2015;16(12):29875–88. https://doi.org/10.3390/ijms161226201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Chim SS, Tong YK, Chiu RW, Lau TK, Leung TN, Chan LY, et al. Detection of the placental epigenetic signature of the maspin gene in maternal plasma. Proc Natl Acad Sci U S A. 2005;102(41):14753–8. https://doi.org/10.1073/pnas.0503335102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan KC, Ding C, Gerovassili A, Yeung SW, Chiu RW, Leung TN, et al. Hypermethylated RASSF1A in maternal plasma: a universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem. 2006;52(12):2211–8. https://doi.org/10.1373/clinchem.2006.074997.

    Article  CAS  PubMed  Google Scholar 

  12. Kunstman JW, Korah R, Healy JM, Prasad M, Carling T. Quantitative assessment of RASSF1A methylation as a putative molecular marker in papillary thyroid carcinoma. Surgery. 2013;154(6):1255–61; discussion 61-2. https://doi.org/10.1016/j.surg.2013.06.025.

    Article  PubMed  Google Scholar 

  13. Jiao X, Zhang S, Jiao J, Zhang T, Qu W, Muloye GM, et al. Promoter methylation of SEPT9 as a potential biomarker for early detection of cervical cancer and its overexpression predicts radioresistance. Clin Epigenetics. 2019;11(1):120. https://doi.org/10.1186/s13148-019-0719-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Lyu J-Y, Chen J-Y, Zhang X-J, Zhang M-W, Yu G-S, Zhang L, et al. Septin 9 methylation in nasopharyngeal swabs: a potential minimally invasive biomarker for the early detection of nasopharyngeal carcinoma. Dis Markers. 2020;2020:1–7. https://doi.org/10.1155/2020/7253531.

    Article  CAS  Google Scholar 

  15. Zejskova L, Jancuskova T, Kotlabova K, Doucha J, Hromadnikova I. Feasibility of fetal-derived hypermethylated RASSF1A sequence quantification in maternal plasma--next step toward reliable non- invasive prenatal diagnostics. Exp Mol Pathol. 2010;89(3):241–7. https://doi.org/10.1016/j.yexmp.2010.09.002.

    Article  CAS  PubMed  Google Scholar 

  16. Saraswathy S, Sahai K, Arora D, Krishnan M, Mendiratta SL, Biswas S, et al. Fetal-specific hypermethylated RASSF1A quantification in pregnancy. J Matern Fetal Neonatal Med. 2017;30(7):849–53. https://doi.org/10.1080/14767058.2016.1188917.

    Article  CAS  PubMed  Google Scholar 

  17. White HE, Dent CL, Hall VJ, Crolla JA, Chitty LS. Evaluation of a novel assay for detection of the fetal marker RASSF1A: facilitating improved diagnostic reliability of noninvasive prenatal diagnosis. PLoS One. 2012;7(9):e45073. https://doi.org/10.1371/journal.pone.0045073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hill M, Finning K, Martin P, Hogg J, Meaney C, Norbury G, et al. Non-invasive prenatal determination of fetal sex: translating research into clinical practice. Clin Genet. 2011;80(1):68–75. https://doi.org/10.1111/j.1399-0004.2010.01533.x.

    Article  CAS  PubMed  Google Scholar 

  19. Malpeli G, Innamorati G, Decimo I, Bencivenga M, Nwabo Kamdje AH, Perris R, et al. Methylation dynamics of RASSF1A and its impact on cancer. Cancers (Basel). 2019;11(7). https://doi.org/10.3390/cancers11070959.

  20. Warren JD, Xiong W, Bunker AM, Vaughn CP, Furtado LV, Roberts WL, et al. Septin 9 methylated DNA is a sensitive and specific blood test for colorectal cancer. BMC Med. 2011;9:133. https://doi.org/10.1186/1741-7015-9-133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Tsui DW, Chan KC, Chim SS, Chan LW, Leung TY, Lau TK, et al. Quantitative aberrations of hypermethylated RASSF1A gene sequences in maternal plasma in pre-eclampsia. Prenat Diagn. 2007;27(13):1212–8. https://doi.org/10.1002/pd.1897.

    Article  CAS  PubMed  Google Scholar 

  22. Saraswathy S, Sahai K, Yadav TP, Arora D, Mendiratta SL, Naqvi SH, et al. Evaluation of fetal hypermethylated RASSF1A in pre-eclampsia and its relationship with placental protein-13, pregnancy associated plasma protein-A and urine protein. Pregnancy Hypertens. 2016;6(4):306–12. https://doi.org/10.1016/j.preghy.2016.06.003.

    Article  PubMed  Google Scholar 

  23. Eche S, Mackraj I, Moodley J. Circulating fetal and total cell-free DNA, and sHLA-G in black south African women with gestational hypertension and pre-eclampsia. Hypertens Pregnancy. 2017;36(4):295–301. https://doi.org/10.1080/10641955.2017.1385794.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by the Medical Scientific Research Foundation of Guangdong Province of China (No. A2020245).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liang Zhang or Guo-cheng Liu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 18 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Wang, Cmy., Zhou, Wp. et al. Dynamic Changes of Fetal-Derived Hypermethylated RASSF1A and Septin 9 Sequences in Maternal Plasma. Reprod. Sci. 28, 1194–1199 (2021). https://doi.org/10.1007/s43032-020-00416-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00416-y

Keywords

Navigation