Skip to main content
Log in

EBF1-Correlated Long Non-coding RNA Transcript Levels in 3rd Trimester Maternal Blood and Risk of Spontaneous Preterm Birth

  • Reproductive Epidemiology: Original Article
  • Published:
Reproductive Sciences Aims and scope Submit manuscript

Abstract

Biomarkers associated with spontaneous preterm birth (sPTB) before labor onset could aid in prediction, triage, and stratification for testing interventions. In this study we examined maternal blood EBF1-correlated long non-coding RNAs (lncRNAs) in relation to sPTB. We retrieved all lncRNA transcripts from a public gene expression dataset (GSE59491) derived from maternal blood in trimesters 2 and 3 from a Canadian cohort with a matched set of sPTB (n = 51) and term births (n = 106). LncRNA transcripts differentially expressed (limma moderated t-tests) in sPTB vs. term were tested for correlations (Pearson) with EBF1 mRNA levels in the same blood samples. Using logistic regression, EBF1-correlated lncRNAs were divided into tertiles and assessed in relation to odds of sPTB. Two lncRNA transcripts in the 3rd trimester maternal blood were differentially expressed between sPTB and term births (all p < 0.001 and FDR < 0.250) and positively and negatively correlated with EBF1 mRNA levels. They were as follows: (1) LINC00094 r = 0.196 (95% CI: 0.039 to 0.344), p = 0.015, and BH adjusted p = 0.022 and (2) LINC00870 r = − 0.303 (95% CI: − 0.441 to − 0.152), p < 0.001, and BH adjusted p < 0.001. As compared with term births, sPTBs were more likely to be in the highest tertile of LINC00870 (odds ratio (OR) = 4.08 (95% CI 1.60, 10.40), p = 0.003) and the lowest tertile of LINC00094 (OR = 5.16 (95% CI 1.96, 13.61), p < 0.001). Two sPTB-associated EBF1-correlated lncRNAs (LINC00870 and LINC00094) had multiple potential enhancers containing EBF1 binding site(s). Our current findings, along with previous reports linking EBF1 and sPTB, motivate additional research on the EBF1 gene-related gene expression and regulation in relation to sPTB within other cohorts and within laboratory-based models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Goldenberg RL, Culhane JF, Iams JD, Romero R. Epidemiology and causes of preterm birth. Lancet. 2008;371:75–84.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Manuck TA, Esplin MS, Biggio J, Bukowski R, Parry S, Zhang H, et al. The phenotype of spontaneous preterm birth: application of a clinical phenotyping tool. Am J Obstet Gynecol. 2015;212(4):487.e1–487.e11.

    Article  Google Scholar 

  3. Heng YJ, Pennell CE, McDonald SW, Vinturache AE, Xu J, Lee MWF, et al. Maternal whole blood gene expression at 18 and 28 weeks of gestation associated with spontaneous preterm birth in asymptomatic women. PLoS One. 2016;11(6):e0155191.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Esplin MS, Elovitz MA, Iams JD, Parker CB, Wapner RJ, Grobman WA, et al. Predictive accuracy of serial transvaginal cervical lengths and quantitative vaginal fetal fibronectin levels for spontaneous preterm birth among nulliparous women. JAMA. 2017;317(10):1047–56.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Norman JE, Shennan AH. Prevention of preterm birth e why can't we do any better? Lancet. 2012;381(9862):184e5.

    Google Scholar 

  6. Zhang G, Feenstra B, Bacelis J, Liu X, Muglia LM, Juodakis J, et al. Genetic associations with gestational duration and spontaneous preterm birth. N Engl J Med. 2017;377(12):1156–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nechanitzky R, Akbas D, Scherer S, Gyory I, Hoyler T, Ramamoorthy S, et al. Transcription factor EBF1 is essential for the maintenance of B cell identity and prevention of alternative fates in committed cells. Nat Immunol. 2013;14:867–75.

    Article  CAS  PubMed  Google Scholar 

  8. Zhou G, Holzman C, Heng YJ, Kibschull M, Lye SJ, Vazquez A. EBF1 gene mRNA levels in maternal blood and spontaneous preterm birth. Reprod Sci. 2020;27:316–24.

    Article  CAS  PubMed  Google Scholar 

  9. Zhou G, Holzman C, Heng YJ, Kibschull M, Lye SJ. Maternal blood EBF1-based microRNA transcripts as biomarkers for detecting risk of spontaneous preterm birth: a nested case-control study. J Matern Fetal Neonatal Med. 2020:1–9. https://doi.org/10.1080/14767058.2020.1745178.

  10. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ransohoff JD, Wei Y, Khavari PA. The functions and unique features of long intergenic non-coding RNA. Nat Rev Mol Cell Biol. 2018;19(3):143–57.

    Article  CAS  PubMed  Google Scholar 

  12. He X, He Y, Xi B, Zheng J, Zeng X, Cai Q, et al. LncRNAs expression in preeclampsia placenta reveals the potential role of LncRNAs contributing to preeclampsia pathogenesis. PLoS One. 2013;8(11):e81437.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Luo X, Li X. Long non-coding RNAs serve as diagnostic biomarkers of preeclampsia and modulate migration and invasiveness of trophoblast cells. Med Sci Monit. 2018;24:84–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shi Z, Zhao C, Long W, Ding H, Shen R. Microarray expression profile analysis of long non-coding RNAs in umbilical cord plasma reveals their potential role in gestational diabetes-induced macrosomia. Cell Physiol Biochem. 2015;36(2):542–54.

    Article  CAS  PubMed  Google Scholar 

  15. Romero R, Tarca AL, Chaemsaithong P, Miranda J, Chaiworapongsa T, Jia H, et al. Transcriptome interrogation of human myometrium identifies differentially expressed sense-antisense pairs of protein-coding and long non-coding RNA genes in spontaneous labor at term. J Matern Fetal Neonatal Med. 2014;27(14):1397–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Luo X, Shi Q, Gu Y, Pan J, Hua M, Liu M, et al. LncRNA pathway involved in premature preterm rupture of membrane (PPROM): an epigenomic approach to study the pathogenesis of reproductive disorders. PLoS One. 2013;8(11):e79897.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Luo X, Pan J, Wang L, Wang P, Meijiao Zhang M, Liu M, et al. Epigenetic regulation of lncRNA connects ubiquitin-proteasome system with infection-inflammation in preterm births and preterm premature rupture of membranes. BMC Pregnancy Childbirth. 2015;15:35. https://doi.org/10.1186/s12884-015-0460-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhao X, Dong X, Luo X, Pan J, Ju W, Zhang M, et al. Ubiquitin-proteasome-collagen (CUP) pathway in preterm premature rupture of fetal membranes. Front Pharmacol. 2017;8:310. https://doi.org/10.3389/fphar.2017.00310.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1–2-3 with limma, Glimma and edgeR. F1000Research. 2016;5:1408.

    Article  Google Scholar 

  20. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43:e47. https://doi.org/10.1093/nar/gkv007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang Y, Jiang T, Li Z, Lu L, Zhang R, Zhang D, et al. Analysis of differentially co-expressed genes based on microarray data of hepatocellular carcinoma. Neoplasma. 2017;64(2):216–21.

    Article  CAS  PubMed  Google Scholar 

  22. Drizik E, Corbett S, Zheng Y, Vermeulen R, Dai Y, Hu W, et al. Transcriptomic changes in the nasal epithelium associated with diesel engine exhaust exposure. Environ Int. 2020;137:105506. https://doi.org/10.1016/j.envint.2020.105506.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bishara AJ, Hittner JB. Confidence intervals for correlations when data are not normal. Behav Res Methods. 2017;49:294–309.

    Article  PubMed  Google Scholar 

  24. Hu X, Jung A, Qin G. Interval estimation for the correlation coefficient. Am Stat. 2018;74:29–36. https://doi.org/10.1080/00031305.2018.1437077.

    Article  CAS  Google Scholar 

  25. Curtin F, Schulz P. Multiple correlations and Bonferroni's correction. Biol Psychiatry. 1998;44(8):775–7.

    Article  CAS  PubMed  Google Scholar 

  26. Yu H, Liu BH, Ye ZQ, Li C, Li YX, Li YY. Link-based quantitative methods to identify differentially coexpressed genes and gene pairs. BMC Bioinformatics. 2011;12:315.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Revelle W. psych: Procedures for psychological, psychometric, and personality research. Northwestern University, Evanston, Illinois. R package version 1.9.12. 2019; https://CRAN.R-project.org/package=psych. Accessed 15 Oct 2019.

  28. Devika S, Jeyaseelan L, Sebastian G. Analysis of sparse data in logistic regression in medical research: a newer approach. J Postgrad Med. 2016;62(1):26–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Davison AC, Hinkley DV. Bootstrap methods and their applications. Cambridge: Cambridge University Press; 1997. ISBN 0-521-57391-2

    Book  Google Scholar 

  30. Canty A, Ripley B. boot: Bootstrap R (S-Plus) Functions. R package version 1.3–23. 2019.

  31. Fishilevich S, Nudel R, Rappaport N, Hadar R, Plaschkes I, Iny Stein T, et al. GeneHancer: genome-wide integration of enhancers and target genes in GeneCards. Database (Oxford). 2017;2017:bax028. https://doi.org/10.1093/database/bax028.

    Article  CAS  Google Scholar 

  32. Stelzer G, Rosen R, Plaschkes I, Zimmerman S, Twik M, Fishilevich S, et al. The GeneCards Suite: from gene data mining to disease genome sequence analysis. Curr Protoc Bioinformatics. 2016;54:1.30.1–1.30.33. https://doi.org/10.1002/cpbi.5.

    Article  Google Scholar 

  33. Kamburov A, Stelzl U, Lehrach H, Herwig R. The ConsensusPathDB interaction database: 2013 update. Nucleic Acids Res. 2013;41:D793–800.

    Article  CAS  PubMed  Google Scholar 

  34. Merico D, Isserlin R, Stueker O, Emili A, Bader GD. Enrichment map: a network-based method for gene-set enrichment visualization and interpretation. PLoS One. 2010;5:e13984.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Ullah U, Tripathi P, Lahesmaa R, Rao KV. Gene set enrichment analysis identifies LIF as a negative regulator of human Th2 cell differentiation. Sci Rep. 2012;2:464.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Lukin K, Fields S, Guerrettaz L, Straign D, Rodriguez V, Zandi S, et al. A dose-dependent role for EBF1 in repressing non-B-cell-specific genes. Eur J Immunol. 2011;41:1787–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, et al. Pro-oxidant and cytotoxic effects of circulating heme. Blood. 2002;100:879–87.

    Article  CAS  PubMed  Google Scholar 

  38. Chiabrando D, Vinchi F, Fiorito V, Mercurio S, Tolosano E. Heme in pathophysiology: a matter of scavenging, metabolism and trafficking across cell membranes. Front Pharmacol. 2014;5:1–24.

    Article  CAS  Google Scholar 

  39. Vasconcellos LR, Dutra FF, Siqueira MS, Paula-Neto HA, Dahan J, Kiarely E, et al. Protein aggregation as a cellular response to oxidative stress induced by heme and iron. Proc Natl Acad Sci U S A. 2016;113(47):E7474–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Ferrer MD, Mestre-Alfaro A, Martínez-Tomé M, Carrera-Quintanar L, Capó X, Jiménez-Monreal AM, et al. Haem biosynthesis and antioxidant enzymes in circulating cells of acute intermittent porphyria patients. PLoS One. 2016;11(10):e0164857.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Maitra D, Bragazzi Cunha J, Elenbaas JS, Bonkovsky HL, Shavit JA, Omary MB. Porphyrin-induced protein oxidation and aggregation as a mechanism of porphyria-associated cell injury. Cell Mol Gastroenterol Hepatol. 2019;8(4):535–48.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Moore TA, Ahmad IM, Zimmerman MC. Oxidative stress and preterm birth: an integrative review. Biol Res Nurs. 2018;20(5):497–512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lynch AM, Wagner BD, Deterding RR, Giclas PC, Gibbs RS, Janoff EN, et al. The relationship of circulating proteins in early pregnancy with preterm birth. Am J Obstet Gynecol. 2016;214(4):517.e1–8.

    Article  CAS  Google Scholar 

  44. D'Silva AM, Hyett JA, Coorssen JR. Proteomic analysis of first trimester maternal serum to identify candidate biomarkers potentially predictive of spontaneous preterm birth. J Proteome. 2018;178:31–42.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

G.Z. developed research ideas, conducted data analyses including statistical analysis and bioinformatics analysis, interpreted the data, and drafted manuscript. C.H. provided advice on developing research ideas and conducting data analyses, interpreted the data, as well as reviewed and revised manuscript. B.C., P.W., Y.J.H, M.K., S.J.L., and E.K. reviewed and revised manuscript. All authors gave final approval of the version to be published.

Corresponding author

Correspondence to Guoli Zhou.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethics Approval

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(XLSX 215 kb).

ESM 2

(XLSX 76 kb).

ESM 3

(XLSX 27 kb).

ESM 4

(XLSX 18 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, G., Holzman, C., Chen, B. et al. EBF1-Correlated Long Non-coding RNA Transcript Levels in 3rd Trimester Maternal Blood and Risk of Spontaneous Preterm Birth. Reprod. Sci. 28, 541–549 (2021). https://doi.org/10.1007/s43032-020-00320-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43032-020-00320-5

Keywords

Navigation